Project description:Patients diagnosed with acute myeloid leukemia with complex karyotype (CK AML) have an adverse prognosis using current therapies, especially when accompanied by TP53 alterations. We hereby report the RNA-sequencing analysis of the 68 CK AML samples included in the Leucegene 415 patient cohort. We confirm the frequent occurrence of TP53 alterations in this subgroup and further characterize the allele expression profile and transcript alterations of this gene. We also document that the RAS pathway (N/KRAS, NF1, PTPN11, BRAF) is frequently altered in this disease. Targeted chemical interrogation of genetically characterized primary CK AML samples identifies polo-like kinase 1 (PLK1) inhibitors as the most selective agents for this disease subgroup. TP53 status did not alter sensitivity to PLK1 inhibitors. Interestingly, CK AML specimens display a G2/M transcriptomic signature that includes higher expression levels of PLK1 and correlates with PLK1 inhibition sensitivity. Together, our results highlight vulnerability in CK AML. In line with these in vitro data, volasertib shows a strong anti-AML activity in xenotransplantation mouse models of human adverse AML. Considering that PLK1 inhibitors are currently being investigated clinically in AML and myelodysplastic syndromes, our results provide a new rationale for PLK1-directed therapy in patients with adverse cytogenetic AML.
Project description:A subset of myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) show complex karyotype (CK), and these cases include a relatively high proportion of cases of therapy-related myeloid neoplasms and TP53 mutations. We aimed to evaluate the clinicopathologic features of outcome of 299 AML and MDS patients with CK collected from multiple academic institutions. Mutations were present in 287 patients (96%), and the most common mutation detected was in TP53 gene (247, 83%). A higher frequency of TP53 mutations was present in therapy-related cases (P = .008), with a trend for worse overall survival (OS) in therapy-related patients as compared with de novo disease (P = .08) and within the therapy-related group; the presence of TP53 mutation strongly predicted for worse outcome (P = .0017). However, there was no difference in survival between CK patients based on categorization of AML vs MDS (P = .96) or presence of absence of circulating blasts ≥1% (P = .52). TP53-mutated patients presented with older age (P = .06) and lower hemoglobin levels (P = .004) and marrow blast counts (P = .02) compared with those with CK lacking TP53 mutation. Multivariable analysis identified presence of multihit TP53 mutation as strongest predictor of worse outcome, whereas neither a diagnosis of AML vs MDS nor therapy-relatedness independently influenced OS. Our findings suggest that among patients with MDS and AML, the presence of TP53 mutation (in particular multihit TP53 mutation) in the context of CK identifies a homogeneously aggressive disease, irrespective of the blast count at presentation or therapy-relatedness. The current classification of these cases into different disease categories artificially separates a single biologic disease entity.
Project description:Acute myeloid leukemia with complex karyotype (CK-AML) is associated with poor prognosis, which is only in part explained by underlying TP53 mutations. Especially in the presence of complex chromosomal rearrangements, such as chromothripsis, the outcome of CK-AML is dismal. However, this degree of complexity of genomic rearrangements contributes to the leukemogenic phenotype and treatment resistance of CK-AML remains largely unknown. Applying an integrative workflow for the detection of structural variants (SVs) based on Oxford Nanopore (ONT) genomic DNA long-read sequencing (gDNA-LRS) and high-throughput chromosome confirmation capture (Hi-C) in a well-defined cohort of CK-AML identified regions with an extreme density of SVs. These rearrangements consisted to a large degree of focal amplifications enriched in the proximity of mammalian-wide interspersed repeat elements, which often result in oncogenic fusion transcripts, such as USP7::MVD, or the deregulation of oncogenic driver genes as confirmed by RNA-seq and ONT direct complementary DNA sequencing. We termed this novel phenomenon chromocataclysm. Thus, our integrative SV detection workflow combing gDNA-LRS and Hi-C enables to unravel complex genomic rearrangements at a very high resolution in regions hard to analyze by conventional sequencing technology, thereby providing an important tool to identify novel important drivers underlying cancer with complex karyotypic changes.
Project description:Acute myeloid leukemia with complex karyotype (CK-AML) is characterized by three or more chromosomal aberrations, and comprises 10–12% of AML patients. It is associated with complex chromosomal rearrangements, intra-tumor heterogeneity, therapy resistance and poor overall survival. We aimed to transcriptionally characterize CK-AML by performing RNA sequencing on blasts from 4 CK-AML patient samples.
Project description:Complex karyotype (CK) is associated with a poor prognosis in both acute myeloid leukemia (AML) and myelodysplastic syndrome with excess blasts (MDS-EB). Transcriptomic analyses have improved our understanding of the disease and risk stratification of myeloid neoplasms; however, CK-specific gene expression signatures have been rarely investigated. In this study, we developed and validated a CK-specific gene expression signature. Differential gene expression analysis between the CK and non-CK groups using data from 348 patients with AML and MDS-EB from four cohorts revealed enrichment of the downregulated genes localized on chromosome 5q or 7q, suggesting that haploinsufficiency due to the deletion of these chromosomes possibly underlies CK pathogenesis. We built a robust transcriptional model for CK prediction using LASSO regression for gene subset selection and validated it using the leave-one-out cross-validation method for fitting the logistic regression model. We established a 10-gene CK signature (CKS) predictive of CK with high predictive accuracy (accuracy 94.22%; AUC 0.977). CKS was significantly associated with shorter overall survival in three independent cohorts, and was comparable to that of previously established risk stratification models for AML. Furthermore, we explored of therapeutic targets among the genes comprising CKS and identified the dysregulated expression of superoxide dismutase 1 (SOD1) gene, which is potentially amenable to SOD1 inhibitors.
Project description:Allogeneic hematopoietic cell transplantation (HCT) is often unsuccessful for monosomal karyotype (MK) acute myeloid leukemia (AML). To what degree failures are associated with pretransplant measurable residual disease (MRD)-a dominant adverse-risk factor-is unknown. We therefore studied 606 adults with intermediate- or adverse-risk AML in morphologic remission who underwent allogeneic HCT between 4/2006 and 1/2019. Sixty-eight (11%) patients had MK AML, the majority of whom with complex cytogenetics. Before HCT, MK AML patients more often tested MRDpos by multiparameter flow cytometry (49 vs. 18%; P?<?0.001) and more likely had persistent cytogenetic abnormalities (44 vs. 13%; P?<?0.001) than non-MK AML patients. Three-year relapse/overall survival estimates were 46%/43% and 72%/15% for MRDneg and MRDpos MK AML patients, respectively, contrasted to 20%/64% and 64%/38% for MRDneg and MRDpos non-MK AML patients, respectively. After multivariable adjustment, MRDpos remission status but not MK remained statistically significantly associated with shorter survival and higher relapse risk. Similar results were obtained in several patient subsets. In summary, while our study confirms higher relapse rates and shorter survival for MK-AML compared with non-MK AML patients, these outcomes are largely accounted for by the presence of other adverse prognostic factors, in particular higher likelihood of pre-HCT MRD.
Project description:AML with complex karyotype (CK-AML) is characterized by a high frequency of TP53 alteration (loss and/or mutation). TP53-altered CK-AML were characterized by a higher degree of genomic complexity (aberrations per case, 14.30 vs. 6.16; P<.0001), and by a higher frequency of specific copy number alterations, such as -5/5q-, -7/7q-, -16/16q-, -18/18q-, +1/+1p, and +11/+11q/amp11q13~25; among CK-AML, TP53-altered more frequently exhibited a monosomal karyotype (MK). Patients with TP53 alterations were older and had significantly lower complete remission rates, inferior event-free, relapse-free, and overall survival. In multivariable analysis for overall survival, TP53 alterations, white blood cell counts, and age were the only significant factors. In conclusion, TP53 is the most frequently known altered gene in CK-AML. TP53 alterations are associated with older age, genomic complexity, specific DNA copy number alterations, MK, and dismal outcome. In multivariable analysis, TP53 alteration is the most important prognostic factor in CK-AML, outweighing all other variables, including the MK category.
Project description:We conducted a cytogenetic analysis of 642 children with de novo acute myeloid leukemia (AML) treated on the AML-Berlin-Frankfurt-Münster (BFM) 04 protocol to determine the prognostic value of specific chromosomal aberrations including monosomal (MK+), complex (CK+) and hypodiploid (HK+) karyotypes, individually and in combination. Multivariate regression analysis identified in particular MK+ (n=22) as a new independent risk factor for poor event-free survival (EFS 23±9% vs 53±2% for all other patients, P=0.0003), even after exclusion of four patients with monosomy 7 (EFS 28±11%, P=0.0081). CK+ patients without MK had a better prognosis (n=47, EFS 47±8%, P=0.46) than those with MK+ (n=12, EFS 25±13%, P=0.024). HK+ (n=37, EFS 44±8% for total cohort, P=0.3) influenced outcome only when t(8;21) patients were excluded (remaining n=16, EFS 9±8%, P<0.0001). An extremely poor outcome was observed for MK+/HK+ patients (n=10, EFS 10±10%, P<0.0001). Finally, isolated trisomy 8 was also associated with low EFS (n=16, EFS 25±11%, P=0.0091). In conclusion, monosomal karyotype is a strong and independent predictor for high-risk pediatric AML. In addition, isolated trisomy 8 and hypodiploidy without t(8;21) coincide with dismal outcome. These results have important implications for risk stratification and should be further validated in independent pediatric cohorts.