Genomics

Dataset Information

0

Analyzing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors


ABSTRACT: Decoding heterogeneity of pluripotent stem cell (PSC)-derived neural progeny is fundamental for revealing the origin of diverse progenitors, for defining their lineages, and for identifying fate determinants driving transition through distinct potencies. Here we prospectively isolated consecutively appearing PSC-derived primary progenitors based on their Notch activation state. We first isolate early neuroepithelial cells and show their broad Notch-dependent developmental and proliferative potential. Neuroepithelial cells further yield successive Notch-dependent functional primary progenitors, from early and mid neurogenic radial glia and their derived basal progenitors, to gliogenic radial glia and adult-like neural progenitors, together recapitulating hallmarks of neural stem cell (NSC) ontogeny. Gene expression profiling reveals dynamic stage specific transcriptional patterns that may link development of distinct progenitor identities through Notch activation. Our observations provide a platform for characterization and manipulation of distinct progenitor cell types amenable for developing streamlined neural lineage specification paradigms for modeling development in health and disease.

ORGANISM(S): Homo sapiens

PROVIDER: GSE65369 | GEO | 2015/02/18

SECONDARY ACCESSION(S): PRJNA273811

REPOSITORIES: GEO

Similar Datasets

2015-02-18 | E-GEOD-65369 | biostudies-arrayexpress
2018-12-20 | E-MTAB-5805 | biostudies-arrayexpress
2015-11-21 | E-GEOD-73892 | biostudies-arrayexpress
2020-01-01 | GSE134216 | GEO
2018-12-20 | E-MTAB-5804 | biostudies-arrayexpress
2016-10-31 | GSE77648 | GEO
2008-06-18 | E-GEOD-8034 | biostudies-arrayexpress
2022-01-14 | PXD026110 | Pride
2011-12-08 | E-GEOD-34244 | biostudies-arrayexpress
2015-11-21 | GSE73892 | GEO