Project description:Alkyne probe of CA (alkCA) was synthesized and incubated in human stool-derived ex vivo communities. The alkCA is transformed into CA-linker (CA-LNK) after the click reaction, and then analyzed by LC-MS/MS
Project description:The human gut is colonized by trillions of microorganisms that influence human health and disease through the metabolism of xenobiotics, including therapeutic drugs and antibiotics. The diversity and metabolic potential of the human gut microbiome have been extensively characterized, but it remains unclear which microorganisms are active and which perturbations can influence this activity. Here, we use flow cytometry, 16S rRNA gene sequencing, and metatranscriptomics to demonstrate that the human gut contains distinctive subsets of active and damaged microorganisms, primarily composed of Firmicutes, which display marked temporal variation. Short-term exposure to a panel of xenobiotics resulted in significant changes in the physiology and gene expression of this active microbiome. Xenobiotic-responsive genes were found across multiple bacterial phyla, encoding novel candidate proteins for antibiotic resistance, drug metabolism, and stress response. These results demonstrate the power of moving beyond DNA-based measurements of microbial communities to better understand their physiology and metabolism. RNA-Seq analysis of the human gut microbiome during exposure to antibiotics and therapeutic drugs.
Project description:A rapid ex vivo microbiome assay and metaproteomics approach was used for rapid evaluation of the cultivability of bio-banked live microbiota, which shows minimal detrimental influences of long-term freezing in deoxygenated glycerol buffer on the cultivability of fecal microbiota.
Project description:The trillions of microorganisms in the human gastrointestinal tract are an underexplored aspect of pharmacology. Despite numerous examples of microbial effects on drug efficacy and toxicity, there is often an incomplete understanding of the underlying mechanisms. Here, we dissect the inactivation of the commonly prescribed cardiac glycoside, digoxin, by Eggerthella lenta. Whole genome transcriptional profiling, comparative genomics, and culture-based assays revealed a cytochrome-encoding operon up-regulated by digoxin, absent in non-metabolizing E. lenta strains, and predictive of the efficiency of digoxin inactivation by the human gut microbiome. Digoxin inactivation was further enhanced by microbial interactions and inhibited by arginine. Pharmacokinetic studies using gnotobiotic mice revealed that increasing dietary protein reduces the in vivo metabolism of digoxin by E. lenta, with significant changes to drug concentration in the urine and serum. These results emphasize the importance of viewing pharmacology from the perspective of both our human and microbial genomes. RNA-Seq analysis of Eggerthella lenta cultured with or without digoxin.
Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.
Project description:The human gut is colonized by trillions of microorganisms that influence human health and disease through the metabolism of xenobiotics, including therapeutic drugs and antibiotics. The diversity and metabolic potential of the human gut microbiome have been extensively characterized, but it remains unclear which microorganisms are active and which perturbations can influence this activity. Here, we use flow cytometry, 16S rRNA gene sequencing, and metatranscriptomics to demonstrate that the human gut contains distinctive subsets of active and damaged microorganisms, primarily composed of Firmicutes, which display marked temporal variation. Short-term exposure to a panel of xenobiotics resulted in significant changes in the physiology and gene expression of this active microbiome. Xenobiotic-responsive genes were found across multiple bacterial phyla, encoding novel candidate proteins for antibiotic resistance, drug metabolism, and stress response. These results demonstrate the power of moving beyond DNA-based measurements of microbial communities to better understand their physiology and metabolism.
Project description:The trillions of microorganisms in the human gastrointestinal tract are an underexplored aspect of pharmacology. Despite numerous examples of microbial effects on drug efficacy and toxicity, there is often an incomplete understanding of the underlying mechanisms. Here, we dissect the inactivation of the commonly prescribed cardiac glycoside, digoxin, by Eggerthella lenta. Whole genome transcriptional profiling, comparative genomics, and culture-based assays revealed a cytochrome-encoding operon up-regulated by digoxin, absent in non-metabolizing E. lenta strains, and predictive of the efficiency of digoxin inactivation by the human gut microbiome. Digoxin inactivation was further enhanced by microbial interactions and inhibited by arginine. Pharmacokinetic studies using gnotobiotic mice revealed that increasing dietary protein reduces the in vivo metabolism of digoxin by E. lenta, with significant changes to drug concentration in the urine and serum. These results emphasize the importance of viewing pharmacology from the perspective of both our human and microbial genomes.
Project description:A rapid ex vivo microbiome assay and metaproteomics approach was used for evaluating the impacts of E. durans derived secretome on a human gut microbiome cultured in vitro.
Project description:An ex vivo system was developed to monitor Salmonella growth, virulence (SPI1 expression) and gene expression (measured by microarray) in response to the permissive and exclusive communities. Yellow fluorescent protein (yfp) and cyan fluorescent protein (cfp) variants were fused to the rrn growth-dependent promoter and the hilA operon (SPI-1 cell invasion locus), respectively, in Salmonella. Fluorescence associated with the YFP and CFP reporters was used to monitor Salmonella growth and SPI1 virulence gene expression in co-culture with cecal communities ex vivo. The Salmonella reporter strain was grown in dialysis tubing in a simulated cecal medium, ex vivo cecal contents (EVCC), submerged in permissive or exclusive communities, to enable collection of Salmonella cells for study. Initially, the fluorescent reporters were used to empirically determine the earliest time point at which the exclusive community had the most significant impact on Salmonella growth or virulence expression relative to the permissive community, which was six-hour co-culture of the reporter strain with the communities. Cells were harvested at that time point for gene expression comparisons. Genes within metabolic pathways that were differentially expressed in permissive vs. exclusive communities were subsequently deleted in Salmonella and mutants’ growth dynamics when cocultured with the exclusive community were monitored over 48 hours using a fluorescence plate reader.
Project description:We systematically investigated the responses of five human gut microbiomes to 21 common sweeteners, using an approach combining high-throughput ex vivo microbiome culturing and metaproteomics to quantify functional changes in different taxa. Hierarchical clustering based on metaproteomic responses of individual microbiomes resulted in two clusters. The first cluster was composed of non-caloric artificial sweeteners (NAS) and two sugar alcohols with shorter carbon backbones (4-5 carbon atoms), and the second cluster was composed of sugar alcohols with longer carbon backbones. The metaproteomic functional responses of the second cluster were similar to the prebiotic fructooligosaccharides and kestose, indicating that these sugar alcohol-type sweeteners have potential prebiotic functions.