Project description:Quality control (QC) in mass spectrometry (MS)-based proteomics is mainly based on data-dependent acquisition (DDA) analysis of standard samples. Here, we collect 2754 files acquired by data independent acquisition (DIA) and paired 2638 DDA files from mouse liver digests using 21 mass spectrometers across nine laboratories over 31 months. Our data demonstrate that DIA-based LC-MS/MS-related consensus QC metrics exhibit higher sensitivity compared to DDA-based QC metrics in detecting changes in LC-MS status. We then prioritize 15 metrics and invite 21 experts to manually assess the quality of 2754 DIA files based on those metrics. We develop an AI model for DIA-based QC using 2110 training files. It achieves AUCs of 0.91 (LC) and 0.97 (MS) in the first validation dataset (n = 528), and 0.78 (LC) and 0.94 (MS) in an independent validation dataset (n = 116). Finally, we develop an offline software called iDIA-QC for convenient adoption of this methodology.
Project description:BackgroundRNA-Seq has become one of the most widely used applications based on next-generation sequencing technology. However, raw RNA-Seq data may have quality issues, which can significantly distort analytical results and lead to erroneous conclusions. Therefore, the raw data must be subjected to vigorous quality control (QC) procedures before downstream analysis. Currently, an accurate and complete QC of RNA-Seq data requires of a suite of different QC tools used consecutively, which is inefficient in terms of usability, running time, file usage, and interpretability of the results.ResultsWe developed a comprehensive, fast and easy-to-use QC pipeline for RNA-Seq data, RNA-QC-Chain, which involves three steps: (1) sequencing-quality assessment and trimming; (2) internal (ribosomal RNAs) and external (reads from foreign species) contamination filtering; (3) alignment statistics reporting (such as read number, alignment coverage, sequencing depth and pair-end read mapping information). This package was developed based on our previously reported tool for general QC of next-generation sequencing (NGS) data called QC-Chain, with extensions specifically designed for RNA-Seq data. It has several features that are not available yet in other QC tools for RNA-Seq data, such as RNA sequence trimming, automatic rRNA detection and automatic contaminating species identification. The three QC steps can run either sequentially or independently, enabling RNA-QC-Chain as a comprehensive package with high flexibility and usability. Moreover, parallel computing and optimizations are embedded in most of the QC procedures, providing a superior efficiency. The performance of RNA-QC-Chain has been evaluated with different types of datasets, including an in-house sequencing data, a semi-simulated data, and two real datasets downloaded from public database. Comparisons of RNA-QC-Chain with other QC tools have manifested its superiorities in both function versatility and processing speed.ConclusionsWe present here a tool, RNA-QC-Chain, which can be used to comprehensively resolve the quality control processes of RNA-Seq data effectively and efficiently.