Project description:For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies.
Project description:Membrane-associated proteins are important because they mediate interactions between a cell's external and internal environment and they are often targets of therapeutics. Characterizing their structures and binding interactions, however, is challenging because they typically must be solubilized using artificial membrane systems that can make measurements difficult. Mass spectrometry (MS) is emerging as a valuable tool for studying membrane-associated proteins, and covalent labeling MS has unique potential to provide higher order structure and binding information for these proteins in complicated membrane systems. Here, we demonstrate that diethylpyrocarbonate (DEPC) can be effectively used as a labeling reagent to characterize the binding interactions between a membrane-associated protein and its binding partners in an artificial membrane system. Using chemotaxis histidine kinase (CheA) as a model system, we demonstrate that DEPC-based covalent labeling MS can provide structural and binding information about the ternary complex of CheA with two other proteins that is consistent with structural models of this membrane-associated chemoreceptor system. Despite the moderate hydrophobicity of DEPC, we find that its reactivity with proteins is not substantially influenced by the presence of the artificial membranes. However, correct structural information for this multiprotein chemoreceptor system requires measurements of DEPC labeling at multiple reagent concentrations to enable an accurate comparison between CheA and its ternary complex in the chemoreceptor system. In addition to providing structural information that is consistent with the model of this complex system, the labeling data supplements structural information that is not sufficiently refined in the chemoreceptor model.
Project description:Using mass spectrometry (MS) to obtain information about a higher order structure of protein requires that a protein's structural properties are encoded into the mass of that protein. Covalent labeling (CL) with reagents that can irreversibly modify solvent accessible amino acid side chains is an effective way to encode structural information into the mass of a protein, as this information can be read-out in a straightforward manner using standard MS-based proteomics techniques. The differential reactivity of proteins under two or more conditions can be used to distinguish protein topologies, conformations, and/or binding sites. CL-MS methods have been effectively used for the structural analysis of proteins and protein complexes, particularly for systems that are difficult to study by other more traditional biochemical techniques. This review provides an overview of the non-specific CL approaches that have been combined with MS with a particular emphasis on the reagents that are commonly used, including hydroxyl radicals, carbenes, and diethylpyrocarbonate. We describe the reagent and protein factors that affect the reactivity of amino acid side chains. We also include details about experimental design and workflow, data analysis, recent applications, and some future prospects of CL-MS methods.
Project description:Biotherapeutic's higher order structure (HOS) is a critical determinant of its functional properties and conformational relevance. Here, we evaluated two covalent labeling methods: diethylpyrocarbonate (DEPC)-labeling and fast photooxidation of proteins (FPOP), in conjunction with mass spectrometry (MS), to investigate structural modifications for the new class of immuno-oncological therapy known as bispecific antigen-binding biotherapeutics (BABB). The evaluated techniques unveiled subtle structural changes occurring at the amino acid residue level within the antigen-binding domain under both native and thermal stress conditions, which cannot be detected by conventional biophysical techniques, e.g., near-ultraviolet circular dichroism (NUV-CD). The determined variations in labeling uptake under native and stress conditions, corroborated by binding assays, shed light on the binding effect, and highlighted the potential of covalent-labeling methods to effectively monitor conformational changes that ultimately influence the product quality. Our study provides a foundation for implementing the developed techniques in elucidating the inherent structural characteristics of novel therapeutics and their conformational stability.
Project description:Antigen-antibody epitope mapping is essential for understanding binding mechanisms and developing new protein therapeutics. In this study, we investigate diethylpyrocarbonate (DEPC) covalent labeling-mass spectrometry as a means of analyzing antigen-antibody interactions using the well-characterized model system of TNFα in complex with three different antibodies. Results show that residues buried in the epitope undergo substantial decreases in labeling, as expected. Interestingly, serine, threonine, and tyrosine residues at the edges of the epitope undergo unexpected increases in labeling. The increased labeling of these weakly nucleophilic residues is caused by the formation of hydrophobic pockets upon antibody binding that presumably increase local DEPC concentrations. Residues that are distant from the epitope generally do not undergo changes in labeling extent; however, some that do change experience variations in their local microenvironment due to side-chain reorganization or stabilization of the TNFα trimer that occurs upon binding. Overall, DEPC labeling of antigen-antibody complexes is found to depend on both changes in solvent exposure and changes to the residue microenvironment.
Project description:Amyloid aggregates are associated with several debilitating diseases, and there are numerous efforts to develop small molecule treatments against these diseases. One challenge associated with these efforts is determining protein binding site information for potential therapeutics because amyloid-forming proteins rapidly form oligomers and aggregates, making traditional protein structural analysis techniques challenging. Using β-2-microglobulin (β2m) as a model amyloid-forming protein along with two recently identified small molecule amyloid inhibitors (i.e., rifamycin SV and doxycycline), we demonstrate that covalent labeling and mass spectrometry (MS) can be used to map small-molecule binding sites for a rapidly aggregating protein. Specifically, three different covalent labeling reagents, namely diethylpyrocarbonate, 2,3-butanedione, and the reagent pair EDC/GEE, are used together to pinpoint the binding sites of rifamycin SV, doxycycline, and another molecule, suramin, which binds but does not inhibit Cu(II)-induced β2m amyloid formation. The labeling results reveal binding sites that are consistent with the known effects of these molecules on β2m amyloid formation and are in general agreement with molecular docking results. We expect that this combined covalent labeling approach will be applicable to other protein/small molecule systems that are difficult to study by traditional means.
Project description:Hydrogen-deuterium exchange (HDX) mass spectrometry (MS) and covalent labeling (CL) MS are typically considered to be complementary methods for protein structural analysis, because one probes the protein backbone, while the other probes side chains. For protein-ligand interactions, we demonstrate in this work that the two labeling techniques can provide synergistic structural information about protein-ligand binding when reagents like diethylpyrocarbonate (DEPC) are used for CL because of the differences in the reaction rates of DEPC and HDX. Using three model protein-ligand systems, we show that the slower time scale for DEPC labeling makes it only sensitive to changes in solvent accessibility and insensitive to changes in protein structural fluctuations, whereas HDX is sensitive to changes in both solvent accessibility and structural fluctuations. When used together, the two methods more clearly reveal binding sites and ligand-induced changes to structural fluctuations that are distant from the binding site, which is more comprehensive information than either technique alone can provide. We predict that these two methods will find widespread usage together for more deeply understanding protein-ligand interactions.
Project description:Determining the binding affinity is an important aspect of characterizing protein-ligand complexes. Here, we describe an approach based on covalent labeling (CL)-mass spectrometry (MS) that can accurately provide protein-ligand dissociation constants (Kd values) using diethylpyrocarbonate (DEPC) as the labeling reagent. Even though DEPC labeling reactions occur on a time scale that is similar to the dissociation/reassociation rates of many protein-ligand complexes, we demonstrate that relatively accurate binding constants can still be obtained as long as the extent of protein labeling is kept below 30%. Using two well-established model systems and one insufficiently characterized system, we find that Kd values can be determined that are close to values obtained in previous measurements. The CL-MS-based strategy that is described here should serve as an alternative for characterizing protein-ligand complexes that are challenging to measure by other methods. Moreover, this method has the potential to provide, simultaneously, the affinity and binding site information.
Project description:A new covalent labeling (CL) reagent based on an α,β-unsaturated carbonyl scaffold has been developed for studying protein structure and protein-protein interactions when coupled with mass spectrometry. We show that this new reagent scaffold can react with up to 13 different types of residues on protein surfaces, thereby providing excellent structural resolution. To illustrate the value of this reagent scaffold, it is used to identify the residues involved in the protein-protein interface that is formed upon Zn(II) binding to the protein β-2-microglobulin. The modular design of the α,β-unsaturated carbonyl scaffold allows facile variation of the functional groups, enabling labeling kinetics and selectivity to be tuned. Moreover, by introducing isotopically enriched functional groups into the reagent structure, labeling sites can be more easily identified by MS and MS/MS. Overall, this reagent scaffold should be a valuable CL reagent for protein higher order structure characterization by MS.
Project description:In this work, we use diethylpyrocarbonate (DEPC)-based covalent labeling together with LC-MS/MS analysis to distinguish the two sidechain tautomers of histidine residues in peptides and proteins. From labeling experiments on model peptides, we demonstrate that DEPC reacts equally with both tautomeric forms to produce chemically different products with distinct dissociation patterns and LC retention times, allowing the ratios of the two tautomers to be determined in peptides and proteins. Upon measuring the tautomer ratios of several histidine residues in myoglobin, we find good agreement with previous 2D NMR data on this protein. Because our DEPC labeling/MS approach is simpler, faster, and more precise than 2D NMR, our method will be a valuable way to determine how protein structure enforces histidine sidechain tautomerization. Because the tautomeric state of histidine residues is often important for protein structure and function, the ability of DEPC labeling/MS to distinguish histidine tautomers should equip researchers with a tool to understand the histidine residue structure and function more deeply in proteins.