Project description:Here, we present a method for in-depth human plasma proteome analysis based on high-resolution isoelectric focusing HiRIEF LC-MS/MS, demonstrating high proteome coverage, reproducibility and the potential for liquid biopsy protein profiling. By integrating genomic sequence information to the MS-based plasma proteome analysis, we enable detection of single amino acid variants and for the first time demonstrate transfer of multiple protein variants between mother and fetus across the placenta. We further show that our method has the ability to detect both low abundance tissue-annotated proteins and phosphorylated proteins in plasma, as well as quantitate differences in plasma proteomes between the mother and the newborn as well as changes related to pregnancy.
Project description:Nanoparticles exposed to biological fluids are rapidly surrounded by proteins. It is known that this formed protein corona influences the interplay of nanoparticles with cells or tissue barriers. In this study, we report the impact of a formed human plasma protein corona on the transfer of 80 nm polystyrene (PS) nanoparticles across the human placenta. We used the human ex-vivo placental perfusion model, as it reflects the intact and physiological tissue barrier between mother and unborn. Our results show an enhanced transfer of polystyrenes, exposed to human plasma, across the placenta compared to bovine serum albumin which served as control setting. We isolated nanoparticles before and after tissue exposure and analyzed their protein corona via shotgun proteomics and LC-MS/MS. The corona profile of particles that crossed the placenta highlighted several proteins as possible drivers for elevated tissue transfer. Subsequently two distinct proteins, human albumin and immunoglobulin G, were selected and incubated with the nanoparticles to form a sole protein corona. Strikingly, the protein corona formed by albumin induced significantly the transfer of polystyrenes across the tissue as compared to corona formed by immunoglobulins. To conclude, our study provides a comparative analysis between different formed protein coronas on nanoparticles and a corona dependent transfer behavior of polystyrenes across placental tissue. Our findings suggest that protein corona analyses of nanoparticles might help to understand better their properties at biological barriers.
Project description:Environmental DNA (eDNA) metabarcoding is an increasingly important tool for surveying biodiversity in marine ecosystems. However, the scale of temporal and spatial variability in eDNA signatures, and how this variation may impact eDNA-based marine biodiversity assessments, remains uncertain. To address this question, we systematically examined variation in vertebrate eDNA signatures across depth (0 m to 10 m) and horizontal space (nearshore kelp forest and surf zone) over three successive days in Southern California. Across a broad range of teleost fish and elasmobranchs, results showed significant variation in species richness and community assemblages between surface and depth, reflecting microhabitat depth preferences of common Southern California nearshore rocky reef taxa. Community assemblages between nearshore and surf zone sampling stations at the same depth also differed significantly, consistent with known habitat preferences. Additionally, assemblages also varied across three sampling days, but 69% of habitat preferences remained consistent. Results highlight the sensitivity of eDNA in capturing fine-scale vertical, horizontal, and temporal variation in marine vertebrate communities, demonstrating the ability of eDNA to capture a highly localized snapshot of marine biodiversity in dynamic coastal environments.
Project description:Cisplatin is a widely used anti-tumor agent for the treatment of testicular and ovarian cancers. Carboplatin is used extensively for small cell, non small cell lung cancer and ovarian cancer. Oxaliplatin has recently been approved in the United States (US) for treatment of colorectal cancer. A large portion (in the range of 65% to 98%) of cisplatin in the blood plasma was bound to protein within a day after intravenous administration. The binding of cisplatin and other analogues to proteins and enzymes is generally believed to be the cause of several severe side effects such as ototoxicity and nephrotoxicity. The interactions between platinum based chemotherapy drugs and proteins is proposed to play important roles in both drug activity and toxicity. Therefore, a better understanding of the molecular mechanism of platinum-protein interactions may have an impact on optimization of strategies for treatment. The objective is to develop novel approaches and techniques to provide detailed mechanistic, kinetic and high-resolution structural information on the binding of platinum analogues to blood proteins, and to improve treatment efficacy and reduce side effects.
Project description:Craniopharyngiomas are rare epithelial tumors derived from pituitary gland embryonic tissue. This epithelial tumor can be categorized as an adamantinomatous craniopharyngioma (ACP) or papillary craniopharyngioma (PCP) subtype with histopathological and genetic differences. Genomic and transcriptomic profiles of craniopharyngiomas have been investigated; however, the proteomic profile has yet to be elucidated and added to these profiles. Recent improvements in high-throughput quantitative proteomic approaches have introduced new opportunities for a better understanding of these diseases and the efficient discovery of biomarkers. We aimed to confirm subtype-associated proteomic changes between ACP and PCP specimens. We performed a system-level proteomic study using an integrated approach that combines mass spectrometry-based quantitative proteomic, statistical, and bioinformatics analyses. The bioinformatics analysis showed that differentially expressed proteins between ACP and PCP were significantly involved in mitochondrial organization, fatty acid metabolic processes, exocytosis, the inflammatory response, the cell cycle, RNA splicing, cell migration, and neuron development. Furthermore, using network analysis, we identified hub proteins that were positively correlated with ACP and PCP phenotypes. Our findings improve our understanding of the pathogenesis of craniopharyngiomas and provide novel insights that may ultimately translate to the development of craniopharyngioma subtype-specific therapeutics.
Project description:BackgroundNanoparticles, which are exposed to biological fluids are rapidly interacting with proteins and other biomolecules forming a corona. In addition to dimension, charge and material the distinct protein corona influences the interplay of nanoparticles with tissue barriers. In this study we were focused on the impact of in situ formed human plasma protein corona on the transfer of 80 nm polystyrene nanoparticles (PS-particles) across the human placenta. To study materno-to fetal PS transfer we used the human ex vivo placental perfusion approach, which represents an intact and physiological tissue barrier. To analyze the protein corona of PS particles we performed shotgun proteomics of isolated nanoparticles before and after tissue exposure.ResultsHuman plasma incubated with PS-particles of 80 nm and subsequent formed protein corona enhanced the transfer across the human placenta compared to PS-corona formed by bovine serum albumin and dextran which served as a control. Quantitative and qualitative changes of plasma proteins determined the changes in PS transfer across the barrier. Based on the analysis of the PS-proteome two candidate proteins, namely human albumin and immunoglobulin G were tested if these proteins may account for the enhanced PS-transfer across the placenta. Interestingly, the protein corona formed by human albumin significantly induced the transfer of PS-particles across the tissue compared to the formed IgG-corona.ConclusionIn total we demonstrate the PS corona dynamically and significantly evolves upon crossing the human placenta. Thus, the initial composition of PS particles in the maternal circulation is not predictive for their transfer characteristics and performance once beyond the barrier of the placenta. The precise mechanism of these effects remains to be elucidated but highlights the importance of using well designed biological models when testing nanoparticles for biomedical applications.
Project description:Trace elements can play an important role in maternal health and fetal development, and deficiencies in some essential minerals including zinc and copper have been correlated in some individuals to the development of birth defects and adverse health outcomes later in life. The exact etiology of conditions like preeclampsia and the effects of fetal exposure to toxic metals has not been determined, making the assessment of trace element levels crucial to the elucidation of the causes of conditions like preeclampsia. Previous studies analyzing serum and placenta tissue have produced conflicting findings, suggesting the need for a robust, validated sample preparation and analysis method for the determination of trace elements in placenta. In this report, an acid digestion method and analysis by ICP-MS for a broad metallomics/mineralomics panel of trace elements is developed and validated over three experimental days for inter- and intraday precision and accuracy, linear range, matrix impact, and dilution verification. Spike recovery experiments were performed for the essential elements chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), and zinc (Zn), and the toxic elements arsenic (As), cadmium (Cd), and lead (Pb) at levels equal to and in excess of native concentrations in control placenta tissue. The validated method will be essential for the development of scientific studies of maternal health and toxic metal exposure effects in childhood.
Project description:Aim: To clarify the expression profile of transfer RNA-derived small RNAs (tsRNAs) and disclose the putative role in the pathogenesis of pathological cardiac hypertrophy (PCH). Materials & methods: Small RNA sequencing was conducted in four pairs plasma from PCH patients and healthy volunteers.