Project description:BackgroundMushrooms are rich in dietary fiber, and fiber intake has been reported to increase the levels of short-chain fatty acids (SCFAs). It has also been reported that SCFAs promote immunoglobulin A (IgA) production, indicating involvement in systemic immunity.ObjectivesThe objective of this study was to evaluate the effects of mushroom consumption on the amount of intestinal IgA. We also aimed to comprehensively evaluate the gut microbiota and intestinal metabolome and to conduct an exploratory analysis of their relationship with IgA.MethodsHealthy adults (n = 80) were enrolled in a parallel group trial. Participants consumed a diet with mushrooms or a placebo diet once daily for 4 weeks. Gut microbiota profiles were assessed by sequencing the bacterial 16S ribosomal RNA-encoding gene. Intestinal metabolome profiles were analyzed using capillary electrophoresis-time of flight mass spectrometry (CE-TOFMS).ResultsMushroom consumption tended to increase IgA levels at 4 weeks of consumption compared to those in the control group (p = 0.0807; Hedges' g = 0.480). The mushroom group had significantly higher levels of intestinal SCFAs, such as butyrate and propionate, than the control group (p = 0.001 and 0.020; Hedges' g = 0.824 and 0.474, respectively). Correlation analysis between the changes in the amount of intestinal IgA and the baseline features of the intestinal environment showed that the increasing amount of intestinal IgA was positively correlated with the baseline levels of SCFAs (Spearman's R = 0.559 and 0.419 for butyrate and propionate, respectively).ConclusionConsumption of mushrooms significantly increased the intestinal SCFAs and IgA in some subjects. The increase in intestinal IgA levels was more prominent in subjects with higher SCFA levels at baseline. This finding provides evidence that mushroom alters the intestinal environment, but the intensity of the effect still depends on the baseline intestinal environment. This trial was registered at www.umin.ac.jp as UMIN000043979.
Project description:Epidemiological studies propose a protective role for dietary fiber in colon cancer (CRC). One possible mechanism of fiber is its fermentation property in the gut and ability to change microbiota composition and function. Here, we investigate the role of a dietary fiber mixture in polyposis and elucidate potential mechanisms using TS4Cre×cAPCl°x468 mice. Stool microbiota profiling was performed, while functional prediction was done using PICRUSt. Stool short-chain fatty acid (SCFA) metabolites were measured. Histone acetylation and expression of SCFA butyrate receptor were assessed. We found that SCFA-producing bacteria were lower in the polyposis mice, suggesting a decline in the fermentation product of dietary fibers with polyposis. Next, a high fiber diet was given to polyposis mice, which significantly increased SCFA-producing bacteria as well as SCFA levels. This was associated with an increase in SCFA butyrate receptor and a significant decrease in polyposis. In conclusion, we found polyposis to be associated with dysbiotic microbiota characterized by a decline in SCFA-producing bacteria, which was targetable by high fiber treatment, leading to an increase in SCFA levels and amelioration of polyposis. The prebiotic activity of fiber, promoting beneficial bacteria, could be the key mechanism for the protective effects of fiber on colon carcinogenesis. SCFA-promoting fermentable fibers are a promising dietary intervention to prevent CRC.
Project description:Effects of different dietary fiber (DF) sources on short-chain fatty acids (SCFA) production and absorption in the hindgut of growing pigs were studied by an in vivo-vitro (ileal cannulated pigs and fecal inoculum-based fermentation) method. Thirty-six cannulated pigs (body weight: 48.5 ± 2.1 kg) were randomly allocated to 6 treatments containing the same DF content (16.5%), with either wheat bran (WB), corn bran (CB), sugar beet pulp (SBP), oat bran (OB), soybean hulls (SH), or rice bran (RB) as DF sources. Pigs were allowed 15 days for diet adaptation, and then, fresh ileal digesta and feces were collected to determine SCFA concentration which was normalized for food dry matter intake (DMI) and the hindgut DF fermentability. Fecal microbiota was inoculated into the freeze-dried ileal digesta samples to predict the ability of SCFA production and absorption in the hindgut by in vitro fermentation. The SH group had the largest concentration of total SCFA and propionate in ileal digesta and fecal samples of growing pigs (p < 0.05). Nonetheless, the predicted acetate, total SCFA production, absorption in the SBP group were the highest (p < 0.01), but the lowest in the OB group (p < 0.01) among all groups. Even SBP and OB group had a similar ratio of soluble DF (SDF) to insoluble DF (IDF). The CB group had high determined ileal and fecal butyrate concentration but the lowest butyrate production and absorption in the hindgut (p < 0.01). Overall, the source of DF had a great impact on the hindgut SCFA production and absorption, and SBP fiber had a great potential to increase hindgut SCFA production and absorption.
Project description:BackgroundImproving feed efficiency is the most important goal for modern animal production. The regulatory mechanisms of controlling feed efficiency traits are extremely complex and include the functions related to host genetics and gut microbiota. Short-chain fatty acids (SCFAs), as significant metabolites of microbiota, could be used to refine the combined effect of host genetics and gut microbiota. However, the association of SCFAs with the gut microbiota and host genetics for regulating feed efficiency is far from understood.ResultsIn this study, 464 broilers were housed for RFI measuring and examining the host genome sequence. And 300 broilers were examined for cecal microbial data and SCFA concentration. Genome-wide association studies (GWAS) showed that four out of seven SCFAs had significant associations with genome variants. One locus (chr4: 29414391-29417189), located near or inside the genes MAML3, SETD7, and MGST2, was significantly associated with propionate and had a modest effect on feed efficiency traits and the microbiota. The genetic effect of the top SNP explained 8.43% variance of propionate. Individuals with genotype AA had significantly different propionate concentrations (0.074 vs. 0.131 μg/mg), feed efficiency (FCR: 1.658 vs. 1.685), and relative abundance of 14 taxa compared to those with the GG genotype. Christensenellaceae and Christensenellaceae_R-7_group were associated with feed efficiency, propionate concentration, the top SNP genotypes, and lipid metabolism. Individuals with a higher cecal abundance of these taxa showed better feed efficiency and lower concentrations of caecal SCFAs.ConclusionOur study provides strong evidence of the pathway that host genome variants affect the cecal SCFA by influencing caecal microbiota and then regulating feed efficiency. The cecal taxa Christensenellaceae and Christensenellaceae_R-7_group were identified as representative taxa contributing to the combined effect of host genetics and SCFAs on chicken feed efficiency. These findings provided strong evidence of the combined effect of host genetics and gut microbial SCFAs in regulating feed efficiency traits. Video Abstract.
Project description:Intensive selective breeding for high growth rate and body weight cause excess abdominal fat in broilers. Gut microbiota and folic acid were reported to regulate lipid metabolism. A total of 210 one-day-old broilers were divided into the control (folic acid at 1.3 mg/kg) and folic acid groups (folic acid at 13 mg/kg) to illustrate the effects of folic acid on growth performance, abdominal fat deposition, and gut microbiota, and the experiment lasted 28 d. Results revealed that dietary folic acid addition decreased abdominal fat percentage (P < 0.05) and down-regulated genes expression related to cell proliferation and differentiation in abdominal fat including IGF1, EGF, C/EBPα, PPARγ, PLIN1, FABP4 and PCNA (P < 0.05). Folic acid addition decreased caecal Firmicutes-to-Bacteroidetes ratio (P < 0.01) and increased the proportions of Alistipes, Oscillospira, Ruminococcus, Clostridium, Dehalobacterium and Parabacteroides (P < 0.05). Caecal acetic acid, and propionic acid contents were found to be higher under folic acid treatment (P < 0.05), which were negatively related to genes expression associated with adipocyte proliferation and differentiation (P < 0.05). Ruminococcus was positively correlated with caecal acetic acid content, and the same phenomenon was detected between propionic acid and Oscillospira and Ruminococcus (P < 0.05). Acetic acid and Oscillospira were identified to be negatively associated with abdominal fat percentage (P < 0.05). In conclusion, our data demonstrated that dietary supplementation of folic acid reduced fat deposition in broilers by inhibiting abdominal adipocyte proliferation and differentiation, which might be mediated by changes in gut microbiota and short chain fatty acid production.
Project description:In order to determine whether dis-regulation of a genetic pathway could explain the increased apoptosis of parp-2-/- double positive thymocytes, the gene expression profiles in double positive thymocytes derived from wild-type and parp-2-/- mice were analysed using Affymetrix oligonucleotide chips (mouse genome 430 2.0).
Project description:A total of 24,000 healthy 1-day-old Arbor Acres broilers with similar initial weights were used in this study and fed a basal diet supplemented with 0, 400 and 800 mg/kg isoleucine (Ile), denoted CON, ILE400 and ILE800, respectively. Results revealed that the final body weight, average daily weight gain, and eviscerated carcass rate, of broiler chickens in the ILE400 group were significantly higher than in other groups (p < 0.05). In addition, the ILE400 and ILE800 groups had a lower feed conversion rate and a higher survival rate and breast muscle rate (p < 0.05), while the abdominal fat rate was significantly lower than the CON group (p < 0.05). There were significantly lower serum concentrations of UREA, glucose (GLU) and total cholesterol (TCHO) in the ILE400 and ILE800 groups than in the CON group (p < 0.05); glutathione peroxidase (GSH-Px) activity was significantly higher in the ILE400 group than in the other groups, and tumor necrosis factor-alpha (TNF-α) concentration was considerably lower than in other groups (p < 0.05). Moreover, interleukin (IL)-10 concentration in the ILE800 group was significantly higher than in the other groups (p < 0.05). The ILE400 group significantly down-regulated the mRNA expressions of fatty-acid synthase (FASN) and solid alcohol regulatory element binding protein 1c (SREBP1c), and significantly up-regulated the mRNA expressions of adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), lipoprotein lipase (LPL) and sirtuin1 (Sirt1) (p < 0.05). The ILE400 group had significantly higher intestinal villus height than the CON and ILE800 groups, while the ILE800 group had significantly lower intestinal villus height/crypt depth (p < 0.05). Furthermore, high-throughput sequencing showed that the Shannon index, and Verrucomicrobiota, Colidextribacter and Bacteroides abundances were significantly higher in the ILE400 group than in the CON group (p < 0.05). Interestingly, the ILE800 group reduced the Simpson index, phylum Firmicutes and Bacteroidota abundances (including genera Colidextribacter, Butyricicoccus, [Ruminococcus]_torques_group, Bacteroides, Alistipes, Barnesiella and Butyricimonas), and increased Proteobacteria and Cyanobacteria (including genera Dyella, Devosia, unidentified_Chloroplast and Hyphomicrobium) (p < 0.05). Overall, our study showed that adding 400 mg/kg Ile to the diet (diets total Ile levels at 1.01%, 0.90% and 0.87% during the starter, grower and finisher phases, respectively) increased production performance and improved the health status in broiler chickens.
Project description:Fermented plant product (FPP) is a kind of functional complex containing probiotics and a variety of bioactive substances, which has multiple physiological functions. However, there is no systematic appraisal of FPP as a feed additive for laying hens. This study was conducted to evaluate the utilization of FPP in laying hens. A total of 120 healthy 34-week-old Xianju layers with similar body weight and egg production were randomly allocated into two dietary treatments with four replicates per treatment and 15 birds per replicate for 8 weeks. The dietary treatments included the basal diet without FPP (CON group) and CON diet supplemented with 500 mg/kg of FPP (FPP group). Compared with the CON group, the egg production and egg mass were significantly increased in the FPP group from 38 to 42 and 34 to 42 weeks of age (P < 0.05). Birds fed with the diet containing 500 mg/kg FPP had higher albumen height (P < 0.01) and Haugh unit (P < 0.05) than those of the controls. FPP supplementation significantly increased the villus height (VH) and crypt depth (CD) in the jejunum of laying hens (P < 0.01), as well as the ratio of VH to CD (P < 0.05). The mRNA expression of tight junctions showed that dietary supplementation with FPP significantly increased the expression levels of Occludin (P < 0.01) and ZO-1 (P < 0.05) in jejunum of hens compared to the control group. In addition, dietary supplementation with FPP influenced cecal microbiota of laying hens, which was characterized by the changes in the microbial community composition, including the increased abundances of Firmicutes, Faecalibacterium, Oscillospira, Clostridium, Ruminococcus, and Coprococcus, along with the decreased abundance of Bacteroidetes, Proteobacteria, Phascolarctobacterium, Odoribacter, Desulfovibrio, and Mucispirillum. Spearman's correlation analysis revealed that bacteria such as Faecalibacterium, Ruminococcus, Coprococcus, and Blautia were significantly and positively correlated with the intestinal barrier markers (P < 0.05), with extremely significant correlations between Ruminococcus and ZO-1, and Coprococcus and Occludin (P < 0.01), whereas Desulfovibrio had a negative correlation with the expression of Occludin (P < 0.05). As it can be concluded, FPP supplementation increased the egg production, egg mass, albumen height, and Haugh unit of laying hens, and improved intestinal health by ameliorating intestinal barrier function, which may be partially attributed to the regulation of cecal microbiota. Our findings suggest that FPP has the potential to be used as a feed additive to promote the performance of layers.
Project description:Chronic inflammatory diseases are often initiated and guided by the release of proinflammatory mediators. Rheumatoid arthritis (RA) is caused by an imbalance between the pro- and anti-inflammatory mediators in the joints, thereby favoring chronic inflammation and joint damage. Here, we investigate if short-term high-fiber dietary intervention shifts this towards anti-inflammatory mediators. Healthy controls (n = 10) and RA patients (n = 29) under routine care received daily high-fiber bars for 15 or 30 days, respectively. Stool and sera were analyzed for pro- and anti-inflammatory mediators. A high-fiber dietary intervention resulted in increased anti-inflammatory short-chain fatty acids (SCFA), decreased proarthritic cytokine concentrations, along with a durable shift in the Firmicutes-to-Bacteroidetes ratio. Together, these results further strengthen high-fiber dietary interventions as a practical approach complementing existing pharmacological therapies.