Project description:Due to the potential risk of accidental exposure to gamma radiation, it's critical to identify the biomarkers of radiation exposed creatures. In the present study, NMR based metabolomics combined with multivariate data analysis to evaluate the metabolites changed in the C57BL/6 mouse spleen after 4 days whole body exposure to 3.0 Gy and 7.8 Gy gamma radiations. Principal component analysis (PCA) and orthogonal projection to latent structures analysis (OPLS) are employed for classification and identification potential biomarkers associated with gamma irradiation. Two different strategies for NMR spectral data reduction (i.e., spectral binning and spectral deconvolution) are combined with normalize to constant sum and unit weight before multivariate data analysis, respectively. The combination of spectral deconvolution and normalization to unit weight is the best way for identifying discriminatory metabolites between the irradiation and control groups. Normalized to the constant sum may achieve some pseudo biomarkers. PCA and OPLS results shown that the exposed groups can be well separated from the control group. Leucine, 2-aminobutyrate, valine, lactate, arginine, glutathione, 2-oxoglutarate, creatine, tyrosine, phenylalanine, π-methylhistidine, taurine, myoinositol, glycerol and uracil are significantly elevated while ADP is decreased significantly. These significantly changed metabolites are associated with multiple metabolic pathways and may be potential biomarkers in the spleen exposed to gamma irradiation.
Project description:Acute exposure to high-dose ionizing irradiation has the potential to severely injure the hematopoietic system and its capacity to produce vital blood cells that innately serve to ward off infections and excessive bleeding. Developing a medical radiation countermeasure that can protect individuals from the damaging effects of irradiation remains a significant, unmet need and an area of great public health interest and concern. Despite significant advancements in the field of radiation countermeasure development to find a nontoxic and effective prophylactic agent for acute radiation syndrome, no such drug has yet been approved by the Food and Drug Administration. This study focuses on examining the metabolic corrections elicited by amifostine, a potent radioprotector, on tissues of vital body organs, such as the heart, spleen, and kidney. Our findings indicate that prophylaxis with this drug offers significant protection against potentially lethal radiation injury, in part, by correction of radiation-induced metabolic pathway perturbations.
Project description:Although multiple radioprotectors are currently being investigated preclinically for efficacy and safety, few studies have investigated concomitant metabolic changes. This study examines the effects of amifostine on the metabolic profiles in tissues of mice exposed to cobalt-60 total-body gamma-radiation. Global metabolomic and lipidomic changes were analyzed using ultra-performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) in bone marrow, jejunum, and lung samples of amifostine-treated and saline-treated control mice. Results demonstrate that radiation exposure leads to tissue specific metabolic responses that were corrected in part by treatment with amifostine in a drug-dose dependent manner. Bone marrow exhibited robust responses to radiation and was also highly responsive to protective effects of amifostine, while jejunum and lung showed only modest changes. Treatment with amifostine at 200 mg/kg prior to irradiation seemed to impart maximum survival benefit, while the lower dose of 50 mg/kg offered only limited survival benefit. These findings show that the administration of amifostine causes metabolic shifts that would provide an overall benefit to radiation injury and underscore the utility of metabolomics and lipidomics to determine the underlying physiological mechanisms involved in the radioprotective efficacy of amifostine. This approach may be helpful in identifying biomarkers for radioprotective efficacy of amifostine and other countermeasures under development.
Project description:Ionizing radiation causes depletion of hematopoietic cells and enhances the risk of developing secondary hematopoietic malignancies. Vitamin E analog gamma-tocotrienol (GT3), which has anticancer properties, promotes postirradiation hematopoietic cell recovery by enhancing spleen colony-forming capacity, and provides protection against radiation-induced lethality in mice. However, the underlying molecular mechanism involved in GT3-mediated postirradiation survival is not clearly understood. Recent studies have shown that natural dietary products including vitamin E provide a benefit to biological systems by modulating microRNA (miR) expression. In this study, we show that GT3 differentially modulates the miR footprint in the spleen of irradiated mice compared to controls at early times (day 1), as well as later times (day 4 and 15) after total-body irradiation. We observed that miR expression was altered in a dose- and time-dependent manner in GT3-pretreated spleen tissues from total-body irradiated mice. GT3 appeared to affect the expression of a number of radiation-modulated miRs known to be involved in hematopoiesis and lymphogenesis. Moreover, GT3 pretreatment also suppressed the upregulation of radiation-induced p53, suggesting the function of GT3 in the prevention of radiation-induced damage to the spleen. In addition, we have shown that GT3 significantly reduced serum levels of Flt3L, a biomarker of radiation-induced bone marrow aplasia. Further in silico analyses of the effect of GT3 implied the association of p38 MAPK, ERK and insulin signaling pathways. Our study provides initial insight into the mechanism by which GT3 mediates protection of spleen after total-body irradiation.
Project description:The immune system is very sensitive to radiation. This study revealed that adenosine 5′-monophosphate (5′-AMP) increased the DNA contents of the spleen and the spleen index of irradiated mice. Moreover, the exogenous 5′-AMP could significantly repair the ultra-structure of the damaged spleen through transmission electron microscopy. When indicators of the mouse immune system were assessed, the flow cytometry and enzyme-linked immunosorbent assay (ELISA) revealed that the administration of exogenous 5′-AMP could reduce the apoptosis in the splenic cells. It could also regulate the transition of cells towards S phase, increase the proportion of CD4⁺ and CD8⁺ cellular subsets, and enhance the secretion of interleukin-2 (IL-2), IL-4, IL-10, and interferon-γ (IFN-γ). These effects were associated with a decrease in oxidative stress, as evidenced by changes in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), reduced glutathione (GSH), and malondialdehyde (MDA) levels of spleen tissues. These results suggested that exogenous 5′-AMP could repair the damaged spleen, increase the spleen index, and regulate the cell cycles and apoptosis. There was an increase in the production of various cytokines and play a protective role on the immune system of irradiated mice by dynamically adjusting the REDOX balance.
Project description:Compact chromatin is linked to a poor tumour prognosis and resistance to radiotherapy from photons. We investigated DNA damage induction and repair in the context of chromatin structure for densely ionising alpha radiation as well as its therapeutic potential. Chromatin opening by histone deacetylase inhibitor trichostatin A (TSA) pretreatment reduced clonogenic survival and increased γH2AX foci in MDA-MB-231 cells, indicative of increased damage induction by free radicals using gamma radiation. In contrast, TSA pretreatment tended to improve survival after alpha radiation while γH2AX foci were similar or lower; therefore, an increased DNA repair is suggested due to increased access of repair proteins. MDA-MB-231 cells exposed to fractionated gamma radiation (2 Gy × 6) expressed high levels of stem cell markers, elevated heterochromatin H3K9me3 marker, and a trend towards reduced clonogenic survival in response to alpha radiation. There was a higher level of H3K9me3 at baseline, and the ratio of DNA damage induced by alpha vs. gamma radiation was higher in the aggressive MDA-MB-231 cells compared to hormone receptor-positive MCF7 cells. We demonstrate that heterochromatin structure and stemness properties are induced by fractionated radiation exposure. Gamma radiation-exposed cells may be targeted using alpha radiation, and we provide a mechanistic basis for the involvement of chromatin in these effects.
Project description:Gold nanoparticles (GNPs) are biocompatible nanomaterials that are currently researched for biomedical applications such as imaging and targeted drug delivery. In this investigation, we studied the effects of a single dose (injected on day 1) as well as a priming dose (two injections with a gap of one week) of 5 nm, 20 nm, and 50 nm diameter GNPs on the structural and biochemical changes in the liver, kidney, and spleen of mice. The results showed that small sized GNPs (5 nm) produced significant pathological changes in the liver on day 2 that gradually reduced on day 8. The medium (20 nm) and large (50 nm) sized GNPs preferentially targeted the spleen and caused significant pathological changes to the spleen architecture on day 2 that persisted on day 8 as well. There were minimal and insignificant pathological changes to the kidneys irrespective of the GNPs size. The animals that were primed with the pre-exposure of GNPs did not show any aggravation of histological changes after the second dose of the same GNPs. None of the dose regimens of the GNPs were able to significantly affect the markers of oxidative stress including glutathione (GSH) and malondialdehyde (MDA) in all of the organs that were studied. In conclusion, the size of GNPs plays an important role in their pathological effects on different organs of mice. Moreover, the primed animals become refractory to further pathological changes after the second dose of GNPs, suggesting the importance of a priming dose in medical applications of GNPs.
Project description:Gamma-tocotrienol (GT3), a naturally occurring vitamin E isomer, a promising radioprotector, has been shown to protect mice against radiation-induced hematopoietic and gastrointestinal injuries. We analyzed changes in protein expression profiles of spleen tissue after GT3 treatment in mice exposed to gamma radiation to gain insights into the molecular mechanism of radioprotective efficacy. Male CD2F1 mice, 12-to-14 weeks old, were treated with either vehicle or GT3 at 24 h prior to 7 Gy total-body irradiation. Nonirradiated vehicle, nonirradiated GT3 and age-matched naïve animals were used as controls. Blood and tissues were harvested on days 0, 1, 2, 4, 7, 10 and 14 postirradiation. High-resolution mass-spectrometry-based radioproteomics was used to identify differentially expressed proteins in spleen tissue with or without drug treatment. Subsequent bioinformatic analyses helped delineate molecular markers of biological pathways and networks regulating the cellular radiation responses in spleen. Our results show a robust alteration in spleen proteomic profiles including upregulation of the Wnt signaling pathway and actin-cytoskeleton linked proteins in mediating the radiation injury response in spleen. Furthermore, we show that 24 h pretreatment with GT3 attenuates radiation-induced hematopoietic injury in the spleen by modulating various cell signaling proteins. Taken together, our results show that the radioprotective effects of GT3 are mediated, via alleviation of radiation-induced alterations in biochemical pathways, with wide implications on overall hematopoietic injury.