Project description:Ulcerative colitis (UC), belonging to inflammatory bowel disease (IBD), is a chronic and relapsing inflammatory disorders of the gastrointestinal tract, which is not completely cured so far. Valeriana jatamansi is a Chinese medicine used clinically to treat "diarrhea", which is closely related to UC. This study was to elucidate the therapeutic effects of V. jatamansi extract (VJE) on dextran sodium sulfate (DSS)-induced UC in mice and its underlying mechanism. In this work, VJE effectively ameliorate the symptoms, histopathological scores and reduce the production of inflammatory factors of UC mice. The colon untargeted metabolomics analysis and 16S rDNA sequencing showed remarkable differences in colon metabolite profiles and intestinal microbiome composition between the control and DSS groups, and VJE intervention can reduce these differences. Thirty-two biomarkers were found and modulated the primary pathways including pyrimidine metabolism, arginine biosynthesis and glutathione metabolism. Meanwhile, twelve significant taxa of gut microbiota were found. Moreover, there is a close relationship between endogenous metabolites and intestinal flora. These findings suggested that VJE ameliorates UC by inhibiting inflammatory factors, recovering intestinal maladjustment, and regulating the interaction between intestinal microbiota and host metabolites. Therefore, the intervention of V. jatamansi is a potential therapeutic treatment for UC.
Project description:Asthma is a complex syndrome associated with episodic decompensations provoked by aeroaller-gen exposures. The underlying pathophysiological states driving exacerbations are latent in the resting state and do not adequately inform biomarker-driven therapy. A better understanding of the pathophysiological pathways driving allergic exacerbations is needed. We hypothesized that disease-associated pathways could be identified in humans by unbiased metabolomics of bron-choalveolar fluid (BALF) during the peak inflammatory response provoked by a bronchial aller-gen challenge. We analyzed BALF metabolites in samples from 12 volunteers who underwent segmental bronchial antigen provocation (SBP-Ag). Metabolites were quantified using liquid chromatography-tandem mass spectrometry (LC–MS/MS) followed by pathway analysis and cor-relation with airway inflammation. SBP-Ag induced statistically significant changes in 549 fea-tures that mapped to 72 uniquely identified metabolites. From these features, two distinct induci-ble metabolic phenotypes were identified by the principal component analysis, partitioning around medoids (PAM) and k-means clustering. Ten index metabolites were identified that in-formed the presence of asthma-relevant pathways, including unsaturated fatty acid produc-tion/metabolism, mitochondrial beta oxidation of unsaturated fatty acid, and bile acid metabolism. Pathways were validated using proteomics in eosinophils. A segmental bronchial allergen chal-lenge induces distinct metabolic responses in humans, providing insight into pathogenic and pro-tective endotypes in allergic asthma.
Project description:Cancer-associated fibroblasts (CAFs) have been recognized as important contributors to cancer development and progression. However, opposing evidence has been published whether CAFs, in addition to epigenetic, also undergo somatic genetic alterations and whether these changes contribute to carcinogenesis and tumour progression. We combined multiparameter DNA flow cytometry, flow-sorting and 6K SNP-arrays to study DNA aneuploidy, % S-phase, loss of heterozygosity (LOH) and copy number alterations (CNAs) to study somatic genetic alterations in cervical cancer-associated stromal cell fractions (n = 58) from formalin-fixed, paraffin-embedded (FFPE) samples. Tissue sections were examined for the presence of CAFs. Microsatellite analysis was used to study LOH. By flow cytometry we found no proof for DNA aneuploidy in the vimentin-positive stromal cell fractions of any samples (CV G0G1 population 3.7% +/- 1.2; S-phase 1.4% +/- 1.8). The genotype concordance between the stromal cells and the paired normal endometrium samples was > 99.9%. No evidence for CNAs or LOH was found in the stromal cell fractions. In contrast, high frequencies of DNA content abnormalities (43/57), a significant higher S-phase (14.6% +/- 8.5)(p = 0.0001) and substantial numbers of CNAs and LOH were identified in the keratin-positive epithelial cell fractions (CV G0G1 population 4.1% +/- 1.0). Smooth muscle actin and vimentin immunohistochemistry verified the presence of CAFs in all cases tested. LOH hot-spots on chromosomes 3p, 4p and 6p were confirmed by microsatellite analysis but the stromal cell fractions showed retention of heterozygosity only. From our study we conclude that stromal cell fractions from cervical carcinomas are DNA diploid, have a genotype undistinguishable from patient-matched normal tissue and are genetically stable. Stromal genetic changes do not seem to play a role during cervical carcinogenesis and progression. In addition, the stromal cell fraction of cervical carcinomas can be used as reference allowing large retrospective studies of archival FFPE tissues for which no normal reference tissue is available. Paired experiment, Endometrial (non-tumor) cells vs stromal cells from cervical tumors. Biological replicates: 58 patients. From 5 tumors also the tumor fraction was profiled.
Project description:Recurrent non-medullary thyroid carcinoma (NMTC) is a rare disease. We initially characterized 27 recurrent NMTC: 13 papillary thyroid cancers (PTC), 10 oncocytic follicular carcinomas (FTC-OV), and 4 non-oncocytic follicular carcinomas (FTC). A validation cohort composed of benign and malignant (both recurrent and non-recurrent) thyroid tumours was subsequently analysed (n = 20). Methods Data from genome-wide SNP arrays and flow cytometry were combined to determine the chromosomal dosage (allelic state) in these tumours, including mutation analysis of components of PIK3CA/AKT and MAPK pathways. Results All FTC-OVs showed a very distinct pattern of genomic alterations. Ten out of 10 FTC-OV cases showed near-haploidisation with or without subsequent genome endoreduplication. Near-haploidisation was seen in 5/10 as extensive chromosome-wide monosomy (allelic state [A]) with near-haploid DNA indices and retention of especially chromosome 7 (seen as a heterozygous allelic state [AB]). In the remaining 5/10 chromosomal allelic states AA with near diploid DNA indices were seen with allelic state AABB of chromosome 7, suggesting endoreduplication after preceding haploidisation. The latter was supported by the presence of both near-haploid and endoreduplicated tumour fractions in some of the cases. Results were confirmed using FISH analysis. Relatively to FTC-OV limited numbers of genomic alterations were identified in other types of recurrent NMTC studied, except for chromosome 22q which showed alterations in 6 of 13 PTCs. Only two HRAS, but no mutations of EGFR or BRAF were found in FTC-OV. The validation cohort showed two additional tumours with the distinct pattern of genomic alterations (both with oncocytic features and recurrent). Conclusions We demonstrate that recurrent FTC-OV is frequently characterised by genome-wide DNA haploidisation, heterozygous retention of chromosome 7, and endoreduplication of a near-haploid genome. Whether normal gene dosage on especially chromosome 7 (containing EGFR, BRAF, cMET) is crucial for FTC-OV tumour survival is an important topic for future research. 28 thyroid tumors from 27 patients were profiled by SNP array. Comparisons between different types were made.
Project description:Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer's disease and Parkinson's disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.
Project description:IntroductionRapid detection and identification of pathogens and antimicrobial susceptibility is essential for guiding appropriate antimicrobial therapy and reducing morbidity and mortality associated with sepsis.ObjectivesThe metabolic response of clinical isolates of Klebsiella oxytoca exposed to different concentrations of ciprofloxacin (the second generation of quinolones antibiotics) were studied in order to investigate underlying mechanisms associated with antimicrobial resistance (AMR).MethodsMetabolomics investigations were performed using Fourier-transform infrared (FT-IR) spectroscopy as a metabolic fingerprinting approach combined with gas chromatography-mass spectrometry (GC-MS) for metabolic profiling.ResultsOur findings demonstrated that metabolic fingerprints provided by FT-IR analysis allowed for the differentiation of susceptible and resistant isolates. GC-MS analysis validated these findings, while also providing a deeper understanding of the metabolic alterations caused by exposure to ciprofloxacin. GC-MS metabolic profiling detected 176 metabolic features in the cellular extracts cultivated on BHI broth, and of these, 137 could be identified to Metabolomics Standards Initiative Level 2. Data analysis showed that 40 metabolites (30 Level 2 and 10 unknown) were differentiated between susceptible and resistant isolates. The identified metabolites belonging to central carbon metabolism; arginine and proline metabolism; alanine, aspartate and glutamate metabolism; and pyruvate metabolism. Univariate receiver operating characteristic (ROC) curve analyses revealed that six of these metabolites (glycerol-3-phosphate, O-phosphoethanolamine, asparagine dehydrate, maleimide, tyrosine, and alanine) have a crucial role in distinguishing susceptible from resistant isolates (AUC > 0.84) and contributing to antimicrobial resistance in K. oxtytoca.ConclusionOur study provides invaluable new insights into the mechanisms underlying development of antimicrobial resistance in K. oxytoca suggests potential therapeutic targets for prevention and identification of AMR in K. oxytoca infections.
Project description:Loss of immune function and an increased incidence of myeloid leukemia are two of the most clinically significant consequences of aging of the hematopoietic system. To better understand the mechanisms underlying hematopoietic aging, we evaluated the cell intrinsic functional and molecular properties of highly purified long-term hematopoietic stem cells (LT-HSCs) from young and old mice. We found that LT-HSC aging was accompanied by cell autonomous changes, including increased stem cell self-renewal, differential capacity to generate committed myeloid and lymphoid progenitors, and diminished lymphoid potential. Expression profiling revealed that LT-HSC aging was accompanied by the systemic down-regulation of genes mediating lymphoid specification and function and up-regulation of genes involved in specifying myeloid fate and function. Moreover, LT-HSCs from old mice expressed elevated levels of many genes involved in leukemic transformation. These data support a model in which age-dependent alterations in gene expression at the stem cell level presage downstream developmental potential and thereby contribute to age-dependent immune decline, and perhaps also to the increased incidence of leukemia in the elderly. 3 old mice and 5 young mice were assayed
Project description:Alzheimer's disease (AD) is one of the most common progressive neurodegenerative diseases, accompanied by global alterations in metabolic profiles. In the past 10 years, over hundreds of metabolomics studies have been conducted to unravel metabolic changes in AD, which provides insight into the identification of potential biomarkers for diagnosis, treatment, and prognostic assessment. However, since different species may lead to systemic abnormalities in metabolomic profiles, it is urgently needed to perform a comparative metabolomics analysis between AD animal models and human patients. In this study, we integrated 78 metabolic profiles from public literatures, including 11 metabolomics studies in different AD mouse models and 67 metabolomics studies from AD patients. Metabolites and enrichment analysis were further conducted to reveal key metabolic pathways and metabolites in AD. We totally identified 14 key metabolites and 16 pathways that are both differentially significant in AD mouse models and patients. Moreover, we built a metabolite-target network to predict potential protein markers in AD. Finally, we validated HER2 and NDF2 as key protein markers in APP/PS1 mice. Overall, this study provides a comprehensive strategy for AD metabolomics research, contributing to understanding the pathological mechanism of AD.