Project description:The detachment of epithelial cells, but not cancer cells, causes anoikis due to reduced energy production. Invasive tumor cells generate three splice variants of the metastasis gene osteopontin. The cancer-specific form osteopontin-c supports anchorage-independence through inducing oxidoreductases and upregulating intermediates/enzymes in the hexose monophosphate shunt, glutathione cycle, glycolysis, glycerol phosphate shuttle, and mitochondrial respiratory chain. Osteopontin-c signaling upregulates glutathione (consistent with the induction of the enzyme GPX-4), glutamine and glutamate (which can feed into the tricarboxylic acid cycle). Consecutively, the cellular ATP levels are elevated. The elevated creatine may be synthesized from serine via glycine and also supports the energy metabolism by increasing the formation of ATP. Metabolic probing with N-acetyl-L-cysteine, L-glutamate, or glycerol identified differentially regulated pathway components, with mitochondrial activity being redox dependent and the creatine pathway depending on glutamine. The effects are consistent with a stimulation of the energy metabolism that supports anti-anoikis. Our findings imply a synergism in cancer cells between osteopontin-a, which increases the cellular glucose levels, and osteopontin-c, which utilizes this glucose to generate energy. mRNA profiles of MCF-7 cells transfected with osteopontin-a, osteopontin-c and vector control were generated by RNA-Seq, in triplicate, by Illumina HiSeq.
Project description:Hereditary angioedema (HAE) is a rare and potentially life-threatening disease with heterogeneous clinical symptoms. The metabolomic profile of HAE remains unknown. Uncovering the metabolic signatures of HAE may provide inspiration for a comprehensive understanding of HAE pathogenesis and may help explore potential new metabolic biomarkers. We performed a comprehensive metabolic analysis using high-performance liquid chromatography−tandem mass spectrometry (HPLC-MS/MS). Urine samples from 34 HAE patients and 82 healthy controls (HCs) were collected to characterize the metabolic signatures associated with HAE. The metabolomes of HAE patients carrying different mutation types were also compared. A total of 795 metabolites were accurately detected and quantified. We considered 73 metabolites as differential metabolites in HAE patients (with an importance in projection (VIP) value > 1.0, q-value < 0.05, and fold change (FC) ≥ 1.2 or FC ≤ 0.8). Several metabolites associated with riboflavin metabolism, the citrate cycle, oxidative stress, and inflammation, including xanthine, oxypurinol, vitamin B2, and isocitrate, were significantly altered in HAE patients. No significantly different metabolites were found in HAE patients carrying different mutation types. The present study highlights that metabolic disturbances in the purine metabolism, riboflavin metabolism, and TCA cycle may be involved in the pathogenesis of HAE. Although biochemical significance requires further experimental verification, these findings may help to identify novel candidate metabolite biomarkers associated with HAE.
Project description:Metabolomics has emerged as a mainstream approach for investigating complex metabolic phenotypes but has yet to be integrated into routine clinical diagnostics. Metabolomics-based diagnosis of urinary tract infections (UTIs) is a logical application of this technology since microbial waste products are concentrated in the bladder and thus could be suitable markers of infection. We conducted an untargeted metabolomics screen of clinical specimens from patients with suspected UTIs and identified two metabolites, agmatine, and N6-methyladenine, that are predictive of culture-positive samples. We developed a 3.2-min LC-MS assay to quantify these metabolites and showed that agmatine and N6-methyladenine correctly identify UTIs caused by 13 Enterobacterales species and 3 non-Enterobacterales species, accounting for over 90% of infections (agmatine AUC > 0.95; N6-methyladenine AUC > 0.89). These markers were robust predictors across two blinded cohorts totaling 1629 patient samples. These findings demonstrate the potential utility of metabolomics in clinical diagnostics for rapidly detecting UTIs.
Project description:BackgroundCirrhosis can alter several metabolic pathways. Metabolomics could prognosticate outcomes like hepatic encephalopathy (HE), transplant, hospitalization and death.AimDetermine changes in serum and urine metabolomics in cirrhotics who develop outcomes.MethodsCirrhotic outpatients underwent data, serum/urine collection and were followed for 90 days. Demographics, cirrhosis details and medications were collected. Metabolomics was performed on urine/serum using GC/MS with subsequent bioinformatics analyses (ChemRICH, MetaMAPP and PLS-DA). Logistic regression adjusting for covariates (demographics, alcohol etiology, prior HE, PPI, SBP prophylaxis, rifaximin/lactulose) were performed and ROC curves comparing MELD to adjusted serum & urine metabolites were created.Results211 patients gave serum, of which 64 were hospitalized, 19 developed HE, 13 were transplanted and 11 died. 164 patients gave urine of which 56 were hospitalized, 18 developed HE, 12 were transplanted and 11 died. Metabolomics: Saturated fatty acids, amino acids and bioenergetics-related metabolites differentiated patients with/without outcomes. After regression, 232, 228, 284 and 229 serum metabolites were significant for hospitalization, HE, death and transplant. In urine 290, 284, 227 & 285 metabolites were significant for hospitalization, HE, death and transplant respectively. AUC was higher for serum metabolites vs MELD for HE (0.85 vs.0.76), death (0.99 vs.0.88), transplant (0.975 vs.0.94) and hospitalizations (0.84 vs.0.83). Similarly, urinary metabolite AUC was also higher than MELD for HE (0.87 vs.0.72), death (0.92 vs 0.86), transplant (0.99 vs.0.90) and hospitalizations (0.89 vs.0.84).ConclusionsIn this exploratory study, serum and metabolites focused on lipid, bioenergetics and amino acid metabolism are altered in cirrhotics who develop negative outcomes.
Project description:Mammals display wide range of variation in their lifespan. Investigating the molecular networks that distinguish long- from short-lived species has proven useful to identify determinants of longevity. Here, we compared the liver of long-lived naked mole-rats (NMRs) and the phylogenetically closely related, shorter-lived, guinea pigs using an integrated omic approach. We found that NMRs livers display a unique expression pattern of mitochondrial proteins that result in distinct metabolic features of their mitochondria. For instance, we observed a generally reduced respiration rate associated with lower protein levels of respiratory chain components, particularly complex I, and increased capacity to utilize fatty acids. Interestingly, we show that the same molecular networks are affected during aging in both NMR and humans, supporting a direct link to the extraordinary longevity of both species. Finally, we identified a novel longevity pathway and validated it experimentally in the nematode C. elegans.
Project description:The naked mole-rat (NMR), Heterocephalus glaber, is a mouse-sized subterranean rodent native to East Africa. Research on NMRs is intensifying in an effort to gain leverage from their unusual physiology, long-life span and cancer resistance for the development of new theraputics. Few studies have attempted to explain the reasons behind the NMR’s cancer resistance, but most prominently Tian et al. reported that NMR cells produce high-molecular weight hyaluronan as a potential cause for the NMR’s cancer resistance. Tian et al. have shown that NMR cells are resistant to transformation by SV40 Large T Antigen (SV40LT) and oncogenic HRAS (HRASG12V), a combination of oncogenes sufficient to transform mouse and rat fibroblasts. We have developed a number of lentiviral vectors to deliver both these oncogenes and generated 106 different cell lines from five different tissues and eleven different NMRs, and report here that contrary to Tian et al.’s observation, NMR cells are susceptible to oncogenic transformation by SV40LT and HRASG12V. Our data thus point to a non-cell autonomous mechanism underlying the remarkable cancer resistance of NMRs. Identifying these non-cell autonomous mechanisms could have significant implications on our understanding of human cancer development.