Project description:Soybean oil consumption is increasing worldwide and parallels a rise in obesity. Rich in unsaturated fats, especially linoleic acid, soybean oil is assumed to be healthy, and yet it induces obesity, diabetes, insulin resistance, and fatty liver in mice. Here, we show that the genetically modified soybean oil Plenish, which came on the U.S. market in 2014 and is low in linoleic acid, induces less obesity than conventional soybean oil in C57BL/6 male mice. Proteomic analysis of the liver reveals global differences in hepatic proteins when comparing diets rich in the two soybean oils, coconut oil, and a low-fat diet. Metabolomic analysis of the liver and plasma shows a positive correlation between obesity and hepatic C18 oxylipin metabolites of omega-6 (ω6) and omega-3 (ω3) fatty acids (linoleic and α-linolenic acid, respectively) in the cytochrome P450/soluble epoxide hydrolase pathway. While Plenish induced less insulin resistance than conventional soybean oil, it resulted in hepatomegaly and liver dysfunction as did olive oil, which has a similar fatty acid composition. These results implicate a new class of compounds in diet-induced obesity-C18 epoxide and diol oxylipins.
Project description:Soybean oil consumption is increasing worldwide and parallels the obesity epidemic in the U.S. Rich in unsaturated fats, especially linoleic acid, soybean oil is assumed to be healthy, and yet it induces obesity, diabetes, insulin resistance and fatty liver in mice. The genetically modified soybean oil Plenish came on the U.S. market in 2014: it is low in linoleic acid and similar to olive oil in fatty acid composition. Here we show that Plenish induces less obesity than conventional soybean oil: metabolomics, proteomics and a transgenic mouse model implicate oxylipin metabolites of omega-6 and omega-3 fatty acids (linoleic and α-linolenic acid, respectively), which are generated by target genes of nuclear receptor HNF4α. While Plenish induces less insulin resistance than conventional soybean oil, it results in hepatomegaly and liver dysfunction as does olive oil. Altering the fatty acid profile of soybeans could help reduce obesity but may also cause liver complications.
Project description:Soybean oil consumption is increasing worldwide and parallels the rise in obesity. Rich in unsaturated fats, especially linoleic acid, soybean oil is assumed to be healthy, and yet it induces obesity, diabetes, insulin resistance and fatty liver in mice. Here, we show that the genetically modified soybean oil Plenish, which came on the U.S. market in 2014 and is low in linoleic acid, induces less obesity than conventional soybean oil in C57BL/6male mice.
Project description:The long-chain omega-3 fatty acids (n-3 FA) eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA) have beneficial health effects, but the molecular mediators of these effects are not well characterized. Oxygenated n-3 FAs (oxylipins) may be an important class of mediators. Members of this chemical class include epoxides, alcohols, diols, and ketones, many of which have bioactivity in vitro. Neither the presence of n-3 oxylipins in human plasma nor the effect of n-3 FA ingestion on their levels has been documented. We measured plasma oxylipins derived from both the n-3 and n-6 FA classes in healthy volunteers (n = 10) before and after 4 weeks of treatment with prescription n-3 FA ethyl esters (4 g/day). At baseline, EPA and DHA oxylipins were detected in low (1-50 nM) range, with alcohols > epoxides >or= diols. Treatment increased n-3 oxylipin levels 2- to 5-fold and reduced selected n-6 oxylipins by approximately 20%. This is the first documentation that endogenous n-3 oxylipin levels can be modulated by n-3 FA treatment in humans. The extent to which the beneficial cardiovascular effects of n-3 FAs are mediated by increased n-3 and/or reduced n-6 oxylipin levels remains to be explored.
Project description:Pre-clinical studies suggest that circulating oxylipins, i.e., the oxidation products of polyunsaturated fatty acids (PUFAs), modulate gut microbiota composition in mice, but there is no information available in humans. Therefore, this study aimed to investigate the relationship between omega-3 and omega-6 derived oxylipins plasma levels and fecal microbiota composition in a cohort of young adults. 80 young adults (74% women; 21.9 ± 2.2 years old) were included in this cross-sectional study. Plasma levels of oxylipins were measured using liquid chromatography-tandem mass spectrometry. Fecal microbiota composition was analyzed by V3-V4 16S rRNA gene sequencing. We observed that plasma levels of omega-3 derived oxylipins were positively associated with the relative abundance of Clostridium cluster IV genus (Firmicutes phylum; rho ≥ 0.415, p ≤ 0.009) and negatively associated with the relative abundance of Sutterella genus (Proteobacteria phylum; rho ≥ -0.270, p ≤ 0.041), respectively. Moreover, plasma levels of omega-6 derived oxylipins were negatively associated with the relative abundance of Acidaminococcus and Phascolarctobacterium genera (Firmicutes phylum; all rho ≥ -0.263, p ≤ 0.024), as well as Sutterella, Succinivibrio, and Gemmiger genera (Proteobacteria phylum; all rho ≥ -0.263, p ≤ 0.024). Lastly, the ratio between omega-6 and omega-3 oxylipins plasma levels was negatively associated with the relative abundance of Clostridium cluster IV genus (Firmicutes phylum; rho = -0.334, p = 0.004) and Butyricimonas genus (Bacteroidetes phylum; rho = -0.292, p = 0.014). In conclusion, our results show that the plasma levels of omega-3 and omega-6 derived oxylipins are associated with the relative abundance of specific fecal bacteria genera.