Project description:Soybean oil consumption is increasing worldwide and parallels a rise in obesity. Rich in unsaturated fats, especially linoleic acid, soybean oil is assumed to be healthy, and yet it induces obesity, diabetes, insulin resistance, and fatty liver in mice. Here, we show that the genetically modified soybean oil Plenish, which came on the U.S. market in 2014 and is low in linoleic acid, induces less obesity than conventional soybean oil in C57BL/6 male mice. Proteomic analysis of the liver reveals global differences in hepatic proteins when comparing diets rich in the two soybean oils, coconut oil, and a low-fat diet. Metabolomic analysis of the liver and plasma shows a positive correlation between obesity and hepatic C18 oxylipin metabolites of omega-6 (ω6) and omega-3 (ω3) fatty acids (linoleic and α-linolenic acid, respectively) in the cytochrome P450/soluble epoxide hydrolase pathway. While Plenish induced less insulin resistance than conventional soybean oil, it resulted in hepatomegaly and liver dysfunction as did olive oil, which has a similar fatty acid composition. These results implicate a new class of compounds in diet-induced obesity-C18 epoxide and diol oxylipins.
Project description:Soybean oil consumption is increasing worldwide and parallels the obesity epidemic in the U.S. Rich in unsaturated fats, especially linoleic acid, soybean oil is assumed to be healthy, and yet it induces obesity, diabetes, insulin resistance and fatty liver in mice. The genetically modified soybean oil Plenish came on the U.S. market in 2014: it is low in linoleic acid and similar to olive oil in fatty acid composition. Here we show that Plenish induces less obesity than conventional soybean oil: metabolomics, proteomics and a transgenic mouse model implicate oxylipin metabolites of omega-6 and omega-3 fatty acids (linoleic and α-linolenic acid, respectively), which are generated by target genes of nuclear receptor HNF4α. While Plenish induces less insulin resistance than conventional soybean oil, it results in hepatomegaly and liver dysfunction as does olive oil. Altering the fatty acid profile of soybeans could help reduce obesity but may also cause liver complications.
Project description:Soybean oil consumption is increasing worldwide and parallels the rise in obesity. Rich in unsaturated fats, especially linoleic acid, soybean oil is assumed to be healthy, and yet it induces obesity, diabetes, insulin resistance and fatty liver in mice. Here, we show that the genetically modified soybean oil Plenish, which came on the U.S. market in 2014 and is low in linoleic acid, induces less obesity than conventional soybean oil in C57BL/6male mice.
Project description:Dietary habit is highly related to nonalcoholic fatty liver disease (NAFLD). Low-fat-high-carbohydrate (LFHC) diets could induce lean NAFLD in Asians. Previously, we found that a lard and soybean oil mixture reduced fat accumulation with a medium-fat diet; therefore, in this study, we evaluated the effect of a lard and soybean oil mixture (LFHC diet) on NAFLD and its underlying mechanisms. Mice in groups were fed with lard, soybean oil, or a lard and soybean oil mixture-an LFHC diet-separately. Our results showed that mixed oil significantly inhibited serum triglyceride, liver triglyceride, serum free fatty acids (FFAs), and liver FFAs compared with soybean oil or lard, and we found fewer inflammatory cells in mice fed with mixed oil. RNA-seq results indicate that mixed oil reduced FFAs transportation into the liver via decreasing liver fatty acid-binding protein 2 expression, inhibited oxidative phosphorylation via tumor necrosis factor receptor superfamily member 6 downregulation, and alleviated inflammation via downregulating inflammatory cytokine. The liquid chromatography-mass spectrometry results showed that the mixed oil promoted bile acid conjugated with taurine and glycine, thus activating G-protein-coupled bile acid receptor 1 for improved lipids metabolism. In conclusion, the lard and soybean oil mixture alleviated NAFLD.
Project description:A high-carbohydrate diet (HCD) is a well-established experimental model of accelerated liver fatty acid (FA) deposition and inflammation. In this study, we evaluated whether canola oil can prevent these physiopathological changes. We evaluated hepatic FA accumulation and inflammation in mice fed with a HCD (72.1% carbohydrates) and either canola oil (C group) or soybean oil (S group) as a lipid source for 0, 7, 14, 28, or 56 days. Liver FA compositions were analyzed by gas chromatography. The mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was measured as an indicator of lipogenesis. The mRNA expression of F4/80, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-10, as mediators of liver inflammation, were also measured. The C group stored less n-6 polyunsaturated FAs (n-6 PUFAs) and had more intense lipid deposition of monounsaturated FAs (MUFAs), n-3 PUFAs, and total FAs. The C group also showed higher ACC1 expression. Moreover, on day 56, the C group showed higher expressions of the inflammatory genes F4/80, TNF-α, IL-1β, and IL-6, as well as the anti-inflammatory IL-10. In conclusion, a diet containing canola oil as a lipid source does not prevent the fatty acid accumulation and inflammation induced by a HCD.