Project description:The telomeric amplicon at 8p12 is common in ER+ breast cancers. Array-CGH and expression analyses of 1172 tumors revealed ZNF703/Zeppo1 was the single gene within the minimal amplicon and was amplified predominantly in the Luminal B subtype. Amplification was shown to correlate with increased gene and protein expression and was associated with a distinct expression signature and poor outcome. In the luminal MCF-7 cell line manipulation of ZNF703 expression altered transcription of genes also present within the primary tumor signature, including TGFBR2 (whose promoter was bound by ZNF703). Overexpression of ZNF703 rendered MCF-7 cells insensitive to TGFβ-induced suppression of mammosphere formation. Forced overexpression of ZNF703 in normal human breast epithelial cells enhanced the frequency of in vitro colony-forming cells from luminal progenitors. Together these data strongly point to ZNF703/Zeppo1 as a novel oncogene in Luminal B breast cancer. MCF-7 breast cancer cell line was infected with ZNF703 overexpression (ZNF703) or control (HIV) virus and following GFP sorting of infected cells, were transfected with control siRNA (siC) or siRNA against endogenous ZNF703 (siZNF), resulting in four different conditions: siC_HIV, siC_ZNF, siZNF_HIV and siZNF-ZNF. RNA for each condition was harvested from triplicate plates.
Project description:Examination of effect of stable DDR1 knockdown by shRNA on transcriptional profile in BXPC3 cell line to understand role of DDR1 in tumorigenesis. Transcriptional profiles of parental BXPC3 cell line was compared to BXPC3 cells stably transfected with non-target shRNA or DDR1 shRNA, N=3 for each condition.
Project description:Tumor proliferation, drug resistance and cell stemness are major difficulties that are encountered during breast cancer therapy and are often responsible for disease progression and cancer-related mortality. β-catenin is considered to be an invasion gene in breast cancer. However, how β-catenin regulates breast cancer cell proliferation and stemness remains unclear. In the present study, β-catenin knockdown by small interfering RNA in MDA-MB-468, a highly metastatic breast cancer cell line, inhibited the expression of β-catenin, Oct3/4 (stemness), survivin (anti-apoptosis) and BCRP (drug resistance). Knockdown of β-catenin enhanced the effects of fluorouracil (5-FU) chemotherapy on the proliferation of MDA-MB-468 cells. Thus, these preliminary results indicate that β-catenin knockdown enhanced 5-FU-induced proliferation inhibition in the breast cancer cell line MDA-MB-468, and indicate that combining 5-FU with gene silencing could be an advantageous option for enhancing the curative effect of chemotherapy in breast cancer and other malignancies.
Project description:Introducing a clinical-practical, alternative splicing activity-based proteogenomic method that identifies, in their oncogenically active states, biomarker genes bearing patient-specific GE or copy-number alterations of prognostic significance. This integrated multi-omics method uses intronic splicing enhancers (ISEs) probes to sort in situ ISE-interacting trans-acting protein factors (trans-interactome) directly from a heterogeneous tumor for subsequent mass spectrometry (MS) characterization.
Project description:The telomeric amplicon at 8p12 is common in ER+ breast cancers. Array-CGH and expression analyses of 1172 tumors revealed ZNF703/Zeppo1 was the single gene within the minimal amplicon and was amplified predominantly in the Luminal B subtype. Amplification was shown to correlate with increased gene and protein expression and was associated with a distinct expression signature and poor outcome. In the luminal MCF-7 cell line manipulation of ZNF703 expression altered transcription of genes also present within the primary tumor signature, including TGFBR2 (whose promoter was bound by ZNF703). Overexpression of ZNF703 rendered MCF-7 cells insensitive to TGFβ-induced suppression of mammosphere formation. Forced overexpression of ZNF703 in normal human breast epithelial cells enhanced the frequency of in vitro colony-forming cells from luminal progenitors. Together these data strongly point to ZNF703/Zeppo1 as a novel oncogene in Luminal B breast cancer. MCF-7 breast cancer cell line was infected with ZNF703 overexpression (ZNF703) or control (HIV) virus and following GFP sorting of infected cells, were transfected with control siRNA (siC) or siRNA against endogenous ZNF703 (siZNF), resulting in four different conditions: siC_HIV, siC_ZNF, siZNF_HIV and siZNF-ZNF. RNA for each condition was harvested from triplicate plates.
Project description:We report for the first time movement of Correia Repeat Enclosed Elements, through inversion of the element at its chromosomal location. Analysis of Ion Torrent generated genome sequence data from Neisseria gonorrhoeae strain NCCP11945 passaged for 8 weeks in the laboratory under standard conditions and stress conditions revealed a total of 37 inversions: 24 were exclusively seen in the stressed sample; 7 in the control sample; and the remaining 3 were seen in both samples. These inversions have the capability to alter gene expression in N. gonorrhoeae through the previously determined activities of the sequence features of these elements. In addition, the locations of predicted non-coding RNAs were investigated to identify potential associations with CREE. Associations varied between strains, as did the number of each element identified. The analysis indicates a role for CREE in disrupting ancestral regulatory networks, including non-coding RNAs. RNA-Seq was used to examine expression changes related to Correia repeats in the strain
Project description:Cisplatin treatment confers the relative resistance to MCF-7 cells as compared to other breast cancer cell lines. One principal reason is that chemotherapeutic agents induce autophagy in these cells to inhibit apoptosis. Binding immunoglobulin protein (BiP), a master regulator of unfolded protein response (UPR) and 14-3-3ζ are two critical proteins upregulated in breast cancer rendering resistance to anticancer drugs. They also play pivotal roles in autophagy with crosstalk with the apoptotic pathways of UPR through certain regulators. Thus, BiP and 14-3-3ζ were selected as the candidate targets to enhance cell death and apoptosis. First, cisplatin resistance was induced and determined by MTT assay and qPCR in MCF-7 cells. Then, the apoptosis axis of UPR was activated by knocking down either BiP or 14-3-3ζ and overactivated by co-knockdown of BiP and 14-3-3ζ. Apoptosis assays were performed using flow cytometry, TUNEL assays utilized confocal microscopy followed by western blot analysis and caspase-3 and JNK activities were investigated to assess the outcomes. Finally, an autophagy assay followed by western blotting was performed to study the effects of co-knockdown genes on cell autophagy in the presence and absence of cisplatin. The present data indicated the enhancement of cisplatin sensitivity in MCF-7 cells co-knocked down in BiP and 14-3-3ζ compared with either gene knockdown. Upregulation of JNK and cleaved-PARP1 protein levels as well as caspase-3 and JNK overactivation confirmed the results. A marked attenuation of autophagy and Beclin1 as well as ATG5 downregulation were detected in co-knockdown cells compared to knockdown with either BiP or 14-3-3ζ. Cisplatin sensitization of MCF-7 cells through double-knockdown of BiP and 14-3-3ζ highlights the potential of targeting UPR and autophagy factors to increase the effect of chemotherapy.
Project description:The MCF7 cell line represents a typical epithelial cell line and corresponds to luminal A breast cancer (estrogen-responsive). Overexpression of HAX1 was demonstrated in MCF7 cell line as well as in breast cancer samples, suggesting a role of HAX1 in breast cancer progression. HAX1 is a 32-kDa protein of unknown structure, involved in the regulation of apoptosis, cell migration and calcium homeostasis. It was also shown to bind mRNA. Scarcity of structural elements and the presence of a disordered region, inferred from HAX1 sequence, suggests that HAX1 is intrinsically disordered, and may have many protein-protein interactions. So far about 40 different proteins were characterized as HAX1 protein partners. In the present work, applying immunoaffinity chromatography coupled with mass spectrometry, we identified new candidates for HAX1 binding partners in breast cancer cells. Newly identified proteins may be divided into three, partially overlapping groups: cytoskeleton-associated proteins, GTP-ase associated proteins and RNA-binding proteins. These results imply that HAX1 has more protein partners than hitherto described. Subsequent analysis of these interactions may shed some light into molecular mechanisms of HAX1 functions.
Project description:The PI3Kalpha-specific inhibitor Alpelisib (BYL719) has been approved for the treatment of metastatic ER+/HER2- breast cancer patients in combination with Fulvestrant. After initial response, patients develop drug resistance and disease relapses. In order to identify signalling pathways contributing to the acquired resistance to BYL719 in breast cancer, we generated BYL719-resistant T47D cells and used them together with the parental cells to perform label-free quantitative phosphoproteomics.