Project description:Lipids orchestrate biological processes by acting remotely as signaling molecules or locally as membrane components that modulate protein function. Detailed insight into lipid function requires knowledge of the subcellular localization of individual lipids. We report an analysis of the subcellular lipidome of the mammalian macrophage, a cell type that plays key roles in inflammation, immune responses, and phagocytosis. Nuclei, mitochondria, endoplasmic reticulum (ER), plasmalemma, and cytoplasm were isolated from RAW 264.7 macrophages in basal and activated states. Subsequent lipidomic analyses of major membrane lipid categories identified 229 individual/isobaric species, including 163 glycerophospholipids, 48 sphingolipids, 13 sterols, and 5 prenols. Major subcellular compartments exhibited substantially divergent glycerophospholipid profiles. Activation of macrophages by the Toll-like receptor 4-specific lipopolysaccharide Kdo(2)-lipid A caused significant remodeling of the subcellular lipidome. Some changes in lipid composition occurred in all compartments (e.g., increases in the levels of ceramides and the cholesterol precursors desmosterol and lanosterol). Other changes were manifest in specific organelles. For example, oxidized sterols increased and unsaturated cardiolipins decreased in mitochondria, whereas unsaturated ether-linked phosphatidylethanolamines decreased in the ER. We speculate that these changes may reflect mitochondrial oxidative stress and the release of arachidonic acid from the ER in response to cell activation.
Project description:Cellular interactions are critical during development, tissue fitness and epithelial tumor development. The expression levels of specific genes confer to tumoral cells a survival advantage versus the normal neighboring cells. As a consequence, cells surrounding tumors are eliminated and engulfed by macrophages. We propose a novel scenario in which circulating cells facing a tumor can reproduce these cellular interactions. In vitro cultured macrophages from murine bone marrow were used to investigate this hypothesis. M1 macrophages in tumoral medium upregulated markers of a suboptimal condition, such as Sparc and TyrRS, and undergo apoptosis. However, M2 macrophages display higher Myc expression levels and proliferate at the expense of M1. Resulting M1 apoptotic debris is engulfed by M2 in a Sparc- and TyrRS-dependent manner. These findings suggest that tumor-dependent macrophage elimination could deplete immune response against tumors. This possibility could be relevant for macrophage based anti-tumoral strategies.
Project description:Transcriptional profiling of liver cancer associated mesenchymal stem cells comparing normal mesenchymal stem cells from adjacent tumor-free tissues of the same patient 8, Goal was to determine to detect the paracrine trophic factors from liver cancer mesenchymal stem cells. 8 represents liver cancer associated MSCs, N8 represents liver normal MSCs Two-condition experiment, 8 vs. N8 cells. Biological replicates: 1 replicate from the same patient.
Project description:Acumulation of oxidized membrane lipids ultimately results in ferroptotic cell death, which can be prevented by the selenoenzyme glutathione peroxidase 4 (Gpx4). In vivo conditions promoting ferroptosis and susceptible cell types are still poorly defined. In this study, we analyzed the conditional deletion of Gpx4 in mice specifically in the myeloid cell lineages. Surprisingly, development and maintenance of LysM+ macrophages and neutrophils, as well as CD11c+ monocyte-derived macrophages and dendritic cells were unaffected in the absence of Gpx4. Gpx4-deficient macrophages mounted an unaltered proinflammatory cytokine response including IL-1β production following stimulation with TLR ligands and activation of several inflammasomes. Accordingly, Gpx4fl/fl LysM-cre mice were protected from bacterial and protozoan infections. Despite having the capacity to differentiate to alternatively activated macrophages (AAM), these cells lacking Gpx4 triggered ferroptosis both in vitro and in vivo following IL-4 overexpression and nematode infection. Exposure to nitric oxide restored viability of Gpx4-deficient AAM, while inhibition of iNOS in proinflammatory macrophages had no effect. These data together suggest that activation cues of tissue macrophages determine sensitivity to lipid peroxidation and ferroptotic cell death.
Project description:The obligate intracellular pathogen Chlamydia trachomatis (Ctr) is the causative agent of the most common form of sexually transmitted disease in the United States. Genital infections with C. trachomatis can lead to inflammatory tissue damage followed by scarring and tissue remodeling during wound healing. Extensive scarring can lead to ectopic pregnancy or infertility. Classically activated macrophages (CA mϕ), with their anti-microbial effector mechanisms, are known to be involved in acute inflammatory processes during the course of infection. In contrast, alternatively activated macrophages (AA mϕ) contribute to tissue repair at sites of wound healing, and have reduced bactericidal functions. They are present during infection, and thus potentially can provide a growth niche for C. trachomatis during a course of infection. To address this question, macrophages derived from CD14-positive monocytes magnetically isolated from peripheral blood mononuclear cells (PBMC) were treated with interferon-γ or interleukin-4 to produce CA mϕ or AA mϕ, respectively. Confocal microscopy of chlamydial inclusions and quantification of infectious yields revealed better pathogen growth and development in AA mϕ than CA mϕ, which correlated with the reduced expression of indoleamine 2,3-dioxygenase, a known anti-chlamydial effector of the host. Furthermore, AA mϕ stained strongly for transferrin receptor and secreted higher amounts of anti-inflammatory interleukin-10 compared to CA mϕ, characteristics that indicate its suitability as host to C. trachomatis. CA, AA, and resting mϕ were infected with Ctr serovar L2. The data suggest that IL-10 produced by infected AA mϕ attenuated the anti-chlamydial function of CA mϕ with growth recovery observed in infected CA mϕ in the presence of infected, but not mock-infected AA mϕ. This could be related to our observation that IL-10 treatment of infected CA mϕ promoted better chlamydial growth. Thus, in addition to serving as an additional niche, AA mϕ might also serve as a means to modulate the immediate environment by attenuating the anti-chlamydial functions of nearby CA mϕ in a manner that could involve IL-10 produced by infected AA mϕ.
Project description:PurposeAcidity can be a useful alternative biomarker for the targeting of metabolically active cells in certain diseased tissues, as in acute inflammation or aggressive tumors. We investigated the targeting of activated macrophages by pH low insertion peptides (pHLIPs), an established technology for targeting cell-surface acidity.ProceduresThe uptake of fluorescent pHLIPs by activated macrophages was studied in cell cultures, in a mouse model of lung inflammation, and in a mouse tumor model. Fluorescence microscopy, whole-body and organ imaging, immunohistochemistry, and FACS analysis were employed.ResultsWe find that cultured, activated macrophages readily internalize pHLIPs. The uptake is higher in glycolytic macrophages activated by LPS and INF-γ compared to macrophages activated by IL-4/IL-13. Fluorescent pHLIPs target LPS-induced lung inflammation in mice. In addition to marking cancer cells within the tumor microenvironment, fluorescent pHLIPs target CD45+, CD11b+, F4/80+, and CD206+ tumor-associated macrophages with no significant targeting of other immune cells. Also, fluorescent pHLIPs target CD206-positive cells found in the inguinal lymph nodes of animals inoculated with breast cancer cells in mammary fat pads.ConclusionspHLIP peptides sense low cell surface pH, which triggers their insertion into the cell membrane. Unlike cancerous cells, activated macrophages do not retain inserted pHLIPs on their surfaces, instead their highly active membrane recycling moves the pHLIPs into endosomes. Targeting activated macrophages in diseased tissues may enable clinical visualization and therapeutic opportunities.
Project description:Pancreatitis is an inflammatory disease of the pancreas characterized by dysregulated activity of digestive enzymes, necrosis, immune infiltration, and pain. Repeated incidence of pancreatitis is an important risk factor for pancreatic cancer. Legumain, a lysosomal cysteine protease, has been linked to inflammatory diseases such as atherosclerosis, stroke, and cancer. Until now, legumain activation has not been studied during pancreatitis. We used a fluorescently quenched activity-based probe to assess legumain activation during caerulein-induced pancreatitis in mice. We detected activated legumain by ex vivo imaging, confocal microscopy, and gel electrophoresis. Compared with healthy controls, legumain activity in the pancreas of caerulein-treated mice was increased in a time-dependent manner. Legumain was localized to CD68(+) macrophages and was not active in pancreatic acinar cells. Using a small-molecule inhibitor of legumain, we found that this protease is not essential for the initiation of pancreatitis. However, it may serve as a biomarker of disease, since patients with chronic pancreatitis show strongly increased legumain expression in macrophages. Moreover, the occurrence of legumain-expressing macrophages in regions of acinar-to-ductal metaplasia suggests that this protease may influence reprogramming events that lead to inflammation-induced pancreatic cancer.
Project description:LPS treatment of macrophages induces TG accumulation, which is accentuated by TG-rich lipoproteins or FFA. We defined pathways altered during macrophage activation that contribute to TG accumulation. Glucose uptake increased with activation, accompanied by increased GLUT1. Oxidation of glucose markedly decreased, whereas incorporation of glucose-derived carbon into FA and sterols increased. Macrophage activation also increased uptake of FFA, associated with an increase in CD36. Oxidation of FA was markedly reduced, whereas the incorporation of FA into TGs increased, associated with increased GPAT3 and DGAT2. Additionally, macrophage activation decreased TG lipolysis; however, expression of ATGL or HSL was not altered. Macrophage activation altered gene expression similarly when incubated with exogenous FA or AcLDL. Whereas activation with ligands of TLR2 (zymosan), TLR3 (poly I:C), or TLR4 (LPS) induced alterations in macrophage gene expression, leading to TG accumulation, treatment of macrophages with cytokines had minimal effects. Thus, activation of TLRs leads to accumulation of TG in macrophages by multiple pathways that may have beneficial effects in host defense but could contribute to the accelerated atherosclerosis in chronic infections and inflammatory diseases.
Project description:A relationship between periodontal disease and atherosclerosis has been suggested by epidemiological studies. Ligature-induced experimental periodontitis is an adequate model for clinical periodontitis, which starts from plaque accumulation, followed by inflammation in the periodontal tissue. Here we have demonstrated using a ligature-induced periodontitis model that periodontitis activates monocytes/macrophages, which subsequently circulate in the blood and adhere to vascular endothelial cells without altering the serum TNF-α concentration. Adherent monocytes/macrophages induced NF-κB activation and VCAM-1 expression in the endothelium and increased the expression of the TNF-α signaling cascade in the aorta. Peripheral blood-derived mononuclear cells from rats with experimental periodontitis showed enhanced adhesion and increased NF-κB/VCAM-1 in cultured vascular endothelial cells. Our results suggest that periodontitis triggers the initial pathogenesis of atherosclerosis, inflammation of the vasculature, through activating monocytes/macrophages.
Project description:Macrophages are the most abundant immune cell population in normal lung tissue and serve critical roles in innate and adaptive immune responses as well as the development of inflammatory airway disease. Studies in a mouse model of chronic obstructive lung disease and translational studies of humans with asthma and COPD have shown that a special subset of macrophages is required for disease progression. This subset is activated by an alternative pathway that depends on production of IL-4 and IL-13, in contrast to the classic pathway driven by interferon-γ. Recent and unexpected results indicate that alternatively activated macrophages (AAMs) can also become a major source of IL-13 production and, thereby, drive the increased mucus production and airway hyperreactivity that is characteristic of airway disease. Although the normal and abnormal functions of AAMs are still being defined, it is already apparent that markers of this immune cell subset can be useful to guide stratification and treatment of patients with chronic airway diseases. Here, we review basic and clinical research studies that highlight the importance of AAMs in the pathogenesis of asthma, COPD, and other chronic airway diseases.