Project description:Uncoupling protein 3 (UCP3) is highly selectively expressed in skeletal muscle and is known to lower mitochondrial reactive oxygen species and promote fatty acid oxidation; however, the global impact of UCP3 activity on skeletal muscle and whole-body metabolism have not been extensively studied. We utilized untargeted metabolomics to identify novel metabolites that distinguish mice overexpressing UCP3 in muscle, both at rest and after exercise regimens that challenged muscle metabolism, to potentially unmask subtle phenotypes. Male wild-type (WT) and muscle-specific UCP3-overexpressing transgenic (UCP3 Tg) C57BL/6J mice were compared with or without a 5 wk endurance training protocol at rest or after an acute exercise bout (EB). Skeletal muscle, liver, and plasma samples were analyzed by gas chromatography time-of-flight mass spectrometry. Discriminant metabolites were considered if within the top 99th percentile of variable importance measurements obtained from partial least-squares discriminant analysis models. A total of 80 metabolites accurately discriminated UCP3 Tg mice from WT when modeled within a specific exercise condition (i.e., untrained/rested, endurance trained/rested, untrained/EB, and endurance trained/EB). Results revealed that several amino acids and amino acid derivatives in skeletal muscle and plasma of UCP3 Tg mice (e.g., Asp, Glu, Lys, Tyr, Ser, Met) were significantly reduced after an EB; that metabolites associated with skeletal muscle glutathione/Met/Cys metabolism (2-hydroxybutanoic acid, oxoproline, Gly, and Glu) were altered in UCP3 Tg mice across all training and exercise conditions; and that muscle metabolite indices of dehydrogenase activity were increased in UCP3 Tg mice, suggestive of a shift in tissue NADH/NAD+ ratio. The results indicate that mitochondrial UCP3 activity affects metabolism well beyond fatty acid oxidation, regulating biochemical pathways associated with amino acid metabolism and redox status. That select metabolites were altered in liver of UCP3 Tg mice highlights that changes in muscle UCP3 activity can also affect other organ systems, presumably through changes in systemic metabolite trafficking.-Aguer, C., Piccolo, B. D., Fiehn, O., Adams, S. H., Harper, M.-E. A novel amino acid and metabolomics signature in mice overexpressing muscle uncoupling protein 3.
Project description:The Wnt/beta-catenin pathway is implicated in the pathogenesis of hepatocellular cancer (HCC). We developed a transgenic mouse (TG) in the FVB strain that overexpresses Ser45-mutated-beta-catenin in hepatocytes to study the effects on liver regeneration and cancer. In the two independent TG lines adult mice show elevated beta-catenin at hepatocyte membrane with no increase in the Wnt pathway targets cyclin-D1 or glutamine synthetase. However, TG hepatocytes upon culture exhibit a 2-fold increase in thymidine incorporation at day 5 (D5) when compared to hepatocytes from wildtype FVB mice (WT). When subjected to partial hepatectomy (PH), dramatic increases in the number of hepatocytes in S-phase are evident in TG at 40 and WT at 72 hours. Coincident with the earlier onset of proliferation, we observed nuclear translocation of beta-catenin along with an increase in total and nuclear cyclin-D1 protein at 40 hours in TG livers. To test if stimulation of beta-catenin induces regeneration, we used hydrodynamic delivery of Wnt-1 naked DNA to control mice, which prompted an increase in Wnt-1, beta-catenin, and known targets, glutamine synthetase (GS) and cyclin-D1, along with a concomitant increase in cell proliferation. beta-Catenin-overexpressing TG mice, when followed up to 12 months, showed no signs of spontaneous tumorigenesis. However, intraperitoneal delivery of diethylnitrosamine (DEN), a known carcinogen, induced HCC at 6 months in TG mice only. Tumors in TG livers showed up-regulation of beta-catenin, cyclin-D1, and unique genetic aberrations, whereas other canonical targets were unremarkable.beta-Catenin overexpression offers growth advantage during liver regeneration. Also, whereas no spontaneous HCC is evident, beta-catenin overexpression makes TG mice susceptible to DEN-induced HCC.
Project description:Through the analysis of mouse liver tumours promoted by distinct routes (DEN exposure alone, DEN exposure plus non-genotoxic insult with phenobarbital and non-alcoholic fatty liver disease); we report that the cancer associated hyper-methylated CGI events in mice are also predicated by silent promoters that are enriched for both the DNA modification 5-hydroxymethylcytosine (5hmC) and the histone modification H3K27me3 in normal liver. During cancer progression these CGIs undergo hypo-hydroxymethylation, prior to subsequent hyper-methylation; whilst retaining H3K27me3. A similar loss of promoter-core 5hmC is observed in Tet1 deficient mouse livers indicating that reduced Tet1 binding at CGIs may be responsible for the epigenetic dysregulation observed during hepatocarcinogenesis. Consistent with this reduced Tet1 protein levels are observed in mouse liver tumour lesions. As in human, DNA methylation changes at CGIs do not appear to be direct drivers of hepatocellular carcinoma progression in mice. Instead dynamic changes in H3K27me3 promoter deposition are strongly associated with tumour-specific activation and repression of transcription. Our data suggests that loss of promoter associated 5hmC in diverse liver tumours licences DNA methylation reprogramming at silent CGIs during cancer progression. We carry out 5-hydroxymethylation DNA immunoprecipitation (hmeDIP) prior to sequencing Ion Proton P1 to report on the genome-wide 5hmC patterns. Heterozygote pairs of Tet1 B6;129S4-Tet1tm1.1Jae/J mice were bought from The Jackson Laboratory (Maine USA). Heterozygotes were interbred to produce homozygous knock out males with colony mate wild type controls. Genome-wide 5hmC patterns were generated by hydroxymethyl-DNA immuoprecipitation (hmeDIP) followed by genome wide sequencing on the Ion Proton P1 sequencer.
Project description:This study investigated the role of N6-methyladenosine RNA methylation in liver regeneration following partial hepatectomy in mice. We created a liver-specific knockout mouse model by the deletion of Mettl3, a key component of the N6-methyladenosine methyltransferase complex, using the albumin-Cre system. Mettl3 liver-specific knockout mice and their wild-type littermates were subjected to 2/3 partial hepatectomy. Transcriptomic changes in liver tissue at 48 h after partial hepatectomy were detected by RNA-seq. Immunohistochemistry and immunofluorescence were used to determine protein expression levels of Ki67, hepatocyte nuclear factor 4 alpha, and cytokeratin 19. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling was also performed. Liver weight/body weight ratios after partial hepatectomy were significantly lower in Mettl3 liver-specific knockout mice than in wild-type mice at 48 h after 2/3 partial hepatectomy (3.1% ± 0.11% vs. 2.7% ± 0.03%). Compared with wild-type littermates, Mettl3 liver-specific knockout mice showed reduced bromodeoxyuridine staining and reduced Ki-67 expression at 48 h after 2/3 partial hepatectomy. RNA-seq analysis showed that Mettl3 liver-specific knockout delayed the cell cycle progression in murine liver by downregulating the expression levels of genes encoding cyclins D1, A2, B1, and B2. Loss of Mettl3-mediated N6-methyladenosine function led to attenuated liver regeneration by altering the mRNA decay of suppressor of cytokine signaling 6, thereby inhibiting the phosphorylation of signal transducer and activator of transcription 3 during early liver regeneration. These results demonstrated the importance of N6-methyladenosine mRNA modification in liver regeneration and suggest that Mettl3 targeting might facilitate liver regeneration.
Project description:Alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. The liver sustains the earliest and the greatest degree of tissue injury due to chronic alcohol consumption and it has been estimated that alcoholic liver disease (ALD) accounts for almost 50% of all deaths from cirrhosis in the world. In this study, we used a modified Lieber-DeCarli (LD) diet to treat mice with alcohol and simulate chronic alcohol drinking. Using an untargeted metabolomics approach, our aim was to identify the various metabolites and pathways that are altered in the early stages of ALD. Histopathology showed minimal changes in the liver after 6 weeks of alcohol consumption. However, untargeted metabolomics analyses identified 304 metabolic features that were either up- or down-regulated in the livers of ethanol-consuming mice. Pathway analysis revealed significant alcohol-induced alterations, the most significant of which was in the FXR/RXR activation pathway. Targeted metabolomics focusing on bile acid biosynthesis showed elevated taurine-conjugated cholic acid compounds in ethanol-consuming mice. In summary, we showed that the changes in the liver metabolome manifest very early in the development of ALD, and when minimal changes in liver histopathology have occurred. Although alterations in biochemical pathways indicate a complex pathology in the very early stages of alcohol consumption, bile acid changes may serve as biomarkers of the early onset of ALD.
Project description:Progress in development of prognostic and therapeutic options for the rare cholestatic liver diseases, primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), is hampered by limited knowledge of their pathogeneses. In particular, the potential role of hepatotoxic and/or metabolism-altering environmental chemicals in the pathogenesis of these diseases remains relatively unstudied. Moreover, the extent to which metabolic pathways are altered due to ongoing cholestasis and subsequent liver damage or possibly influenced by hepatotoxic chemicals is poorly understood. In this study, we applied a comprehensive exposomics-metabolomics approach to uncover potential pathogenic contributors to PSC and PBC. We used untargeted high-resolution mass spectrometry to characterize a wide range of exogenous chemicals and endogenous metabolites in plasma and tested them for association with disease. Exposome-wide association studies (EWAS) identified environmental chemicals, including pesticides, additives and persistent pollutants, that were associated with PSC and/or PBC, suggesting potential roles for these compounds in disease pathogenesis. Metabolome-wide association studies (MWAS) found disease-associated alterations to amino acid, eicosanoid, lipid, co-factor, nucleotide, mitochondrial and microbial metabolic pathways, many of which were shared between PSC and PBC. Notably, this analysis implicates a potential role of the 5-lipoxygenase pathway in the pathogenesis of these diseases. Finally, EWAS × MWAS network analysis uncovered linkages between environmental agents and disrupted metabolic pathways that provide insight into potential mechanisms for PSC and PBC. Conclusion: This study establishes combined exposomics-metabolomics as a generalizable approach to identify potentially pathogenic environmental agents and enumerate metabolic alterations that may impact PSC and PBC, providing a foundation for diagnostic and therapeutic strategies.
Project description:RNA-sequencing analysis of liver gene expression after combinatorial liver-specific deletion of tumor suppressor genes in a mouse fatty liver disease and liver cancer model. Gene expression was determined at 16 weeks of age, before onset of liver tumor formation. Aim was to study how loss of atypical E2F transcription repressors affected gene expression in Pten-mutant livers.
Project description:Lomatogonium rotatum (L.) Fries ex Nym (LR) is used as a traditional Mongolian medicine to treat liver and bile diseases. This study aimed to investigate the hepatoprotective effect of LR on mice with CCl4-induced acute liver injury through conventional assays and metabolomics analysis. This study consisted of male mice (n = 23) in four groups (i.e., control, model, positive control, and LR). The extract of whole plant of LR was used to treat mice in the LR group. Biochemical and histological assays (i.e., serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), and histological changes of liver tissue) were used to evaluate LR efficacy, and metabolomics analysis based on GC-MS and LC-MS was conducted to reveal metabolic changes. The conventional analysis and metabolomic profiles both suggested that LR treatment could protect mice against CCl4-induced acute liver injury. The affected metabolic pathways included linoleic acid metabolism, α-linolenic acid metabolism, arachidonic acid metabolism, CoA biosynthesis, glycerophospholipid metabolism, the TCA cycle, and purine metabolism. This study identified eight metabolites, including phosphopantothenic acid, succinic acid, AMP, choline, glycerol 3-phosphate, linoleic acid, arachidonic acid, and DHA, as potential biomarkers for evaluating hepatoprotective effect of LR. This metabolomics study may shed light on possible mechanisms of hepatoprotective effect of LR.
Project description:Background: Humans are constantly exposed to low concentrations of 4-tert-octylphenol (OP). However, studies investigating the effects of low-dose OP on the liver are scarce, and the mechanism of these effects has not been thoroughly elucidated to date. Methods: Adult male institute of cancer research (ICR) mice were exposed to low-dose OP (0, 0.01 and 1 μg/kg/day) for 7 consecutive days. Weights of mice were recorded daily during the experiment. Blood serum levels of OP, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined, and haematoxylin-eosin (HE) staining of the liver was performed. We applied an integrated metabolomic and enzyme gene expression analysis to investigate liver metabolic changes, and the gene expression of related metabolic enzymes was determined by real-time PCR and ELISA. Results: OP in blood serum was increased after OP exposure, while body weights of mice were unchanged. Liver weight and its organ coefficient were decreased significantly in the OP (1 μg/kg/day) group, but ALT and AST, as well as the HE staining results, were unchanged after OP treatment. The levels of cytidine, uridine, purine and N-acetylglutamine were increased significantly, and the level of vitamin B6 was decreased significantly in mice treated with OP (1 μg/kg/day). The mRNA and protein levels of Cda and Shmt1 were both increased significantly in OP (1 μg/kg/day)-treated mice. Conclusions: Through metabolomic analysis, our study firstly found that pyrimidine and purine synthesis were promoted and that N-acetylglutamine was upregulated after low-dose OP treatment, indicating that the treatment disturbed nucleic acid and amino acid metabolism in mice liver.