Project description:The intestinal microbiota plays an important role in health and disease and produces, through fermentative reactions, several metabolic products, such as lactate, that can affect the host. The microbiota also interacts with and metabolizes compounds produced by the host, such as primary bile acids. Lactate and bile acids (BA) are of particular interest in gastrointestinal diseases because they have been associated with metabolic acidosis and bile acid diarrhea, respectively. The objectives of this study were to validate an enzymatic assay to quantify D-, L-, and total lactate in canine feces, and to characterize fecal lactate and BA concentrations as well as bacterial abundances in healthy dogs and dogs with gastrointestinal diseases. Fecal samples were collected from 34 healthy dogs, 15 dogs with chronic enteropathy (CE), and 36 dogs with exocrine pancreatic insufficiency (EPI). Lactate was quantified with an enzymatic assay, BA with gas chromatography-mass spectrometry, and 11 bacterial groups with qPCR. A fecal lactate reference interval was established from 34 healthy dogs and was 0.7-1.4 mM, 0.3-6.0 mM, and 1.0-7.0 mM for D-, L-, and total lactate, respectively. The assay to measure D-, L-, and total lactate in canine fecal samples was linear, accurate, precise, and reproducible. Significant increases in fecal lactate and decreases in secondary BA concentrations were observed in dogs with CE and dogs with EPI. Dogs with EPI had an increased abundance of Escherichia coli, Lactobacillus, and Bifidobacterium; a decreased abundance of Fusobacterium and Clostridium hiranonis; and a higher Dysbiosis Index when compared to healthy dogs. Further studies are necessary to determine the clinical utility of lactate and BA quantification in canine feces. These metabolites suggest functional alterations of intestinal dysbiosis and may become promising targets for further elucidating the role of the microbiota in health and disease.
Project description:Ulcerative Colitis (UC) is an inflammatory bowel disease (IBD) that has been associated with gut dysbiosis. Changes in the gut microbiome lead to changes in bile acids (BA) metabolism, which changes the BA profiles in patients with UC. We conducted this study to investigate the differences in bile acids and gut microbiota between Hispanic and Caucasian children and young adults with UC. Twenty-seven Caucasian and 20 Hispanic children and young adults with UC were enrolled in the study. BAs were extracted from the subjects' stool samples and analyzed by liquid chromatography-mass spectrometry. Microbial DNA was also extracted from the stool samples to perform 16s rRNA amplicon sequencing. The median levels of cholic acid and taurolithocholic acid were found to be significantly higher in Hispanic children and young adults with UC compared to their Caucasian counterparts. The abundance of the gut microbiota that metabolizes BAs such as Proteobacteria, Pseudomonadaceae, Pseudomonas, Ruminococcus gnavus, and Escherichia coli were also all significantly higher in Hispanic children and young adults as well. The distinct BA profile that we found in Hispanic children and young adults with UC, in addition to the unique composition of their gut microbiome, provide them with a protective gut environment against inflammation, which is contrary to the common believe that Hispanics have worse IBD.
Project description:BackgroundTylosin is commonly prescribed to dogs with diarrhea. Orally administered antibiotics may alter the intestinal microbiota, which is responsible for crucial key bile acid (BA) biotransformation reactions.ObjectivesTo prospectively evaluate the impact of tylosin administration on fecal microbiota and unconjugated bile acids (UBAs) over time.AnimalsSixteen healthy adult dogs.MethodsProspective, randomized controlled clinical trial. Dogs were randomized to receive 20 mg/kg of tylosin or a placebo capsule PO q12h for 7 days while undergoing daily fecal scoring. Fecal samples were collected on days 0, 7, 21, and 63. The microbiota was assessed using quantitative PCR and 16S rRNA gene sequencing. Unconjugated BAs were assessed using gas chromatography-mass spectrometry (GC-MS).ResultsFecal scores were unchanged during placebo and tylosin administration. In the placebo group, no significant changes were observed in fecal microbiota or UBA concentrations. Day 7 samples from tylosin-exposed dogs exhibited decreased bacterial diversity (observed species, Chao1, Shannon, P < .001) characterized by decreases in anaerobes Fusobacteriaceae (linear discriminant analysis [LDA] score, 5.03) and Veillonellaceae (LDA score, 4.85). Primary UBA concentrations were increased at day 21 (median, [range]; 7.42, [0.67-18.77] μg/kg; P = .04) and day 63 (3.49 [0-28.43] μg/kg; P = .02) compared to day 0 (.14 [.03-1.19] μg/kg) in dogs receiving tylosin. At day 63, bacterial taxa were not significantly different compared to day 0, but the extent of microbial recovery was individualized.Conclusions and clinical importanceTylosin causes fecal dysbiosis in healthy dogs with corresponding shifts in fecal UBAs. Changes did not uniformly resolve after discontinuation of tylosin.
Project description:Quantitative analysis of bile acids in human feces can potentially help to better understand the influence of the gut microbiome and diet on human health. Feces is a highly heterogeneous sample matrix, mainly consisting of water and indigestible solid material (as plant fibers) that show high inter-individual variability. To compare bile acid concentrations among different individuals, a reliable normalization approach is needed. Here, we compared the impact of three normalization approaches, namely sample wet weight, dry weight, and protein concentration, on the absolute concentrations of fecal bile acids. Bile acid concentrations were determined in 70 feces samples from healthy humans. Our data show that bile acid concentrations normalized by the three different approaches are substantially different for each individual sample. Fecal bile acid concentrations normalized by wet weight show the narrowest distribution. Therefore, our analysis will provide the basis for the selection of a suitable normalization approach for the quantitative analysis of bile acids in feces.
Project description:The concentrations of fecal and serum bile acids (BAs) are known to be altered in human patients with chronic liver diseases (CLDs), especially those with biliary tract involvement (BTD). Scarce literature is available regarding fecal BA modifications during canine CLDs. This study aimed to evaluate fecal BAs in canine CLDs according to different clinical and clinicopathological variables. Forty-six dogs were enrolled. Canine feces were analyzed by HPLC. Cholic Acid (CA), Chenodeoxycholic Acid (CDCA), Ursodeoxycholic Acid (UDCA), Deoxycholic Acid (DCA), and Lithocholic Acid (LCA) were measured, and primary BAs (CA + CDCA), secondary BAs (UDCA + DCA + LCA), and the primary/secondary (P/S) ratio were calculated. Primary BAs (p < 0.0001), CA (p = 0.0003), CDCA (p = 0.003), the P/S ratio (p = 0.002), and total BAs (p = 0.005) were significatively higher in BTD dogs (n = 18) compared to in non-BTD dogs (n = 28). Fecal secondary BAs did not statistically differ between BTD and non-BTD dogs. Gastrointestinal clinical signs (p = 0.028) and diarrhea (p = 0.03) were significantly more prevalent in BTD dogs compared to in non-BTD dogs, supporting the hypothesis of some pathological mechanisms assimilable to bile acid diarrhea (BAD). Our results could reflect imbalances of the fecal BA metabolism in dogs with CLDs. Further studies involving gut microbiome and metabolomic assessment are needed to better understand the possible clinical implications of BA metabolism disruption and their potential role in canine CLDs.
Project description:BackgroundResistant starch (RS) type 4 (RS4) is a type of RS, a class of non-digestible prebiotic dietary fibers with a range of demonstrated metabolic health benefits to the host. On the other hand, bile acids (BA) have recently emerged as an important class of metabolic function mediators that involve host-microbiota interactions. RS consumption alters fecal and cecal BA in humans and rodents, respectively. The effect of RS intake on circulating BA concentrations remains unexplored in humans.Methods and resultsUsing available plasma and stool samples from our previously reported double-blind, controlled, 2-arm crossover nutrition intervention trial (Clinicaltrials.gov: NCT01887964), a liquid-chromatography/mass-spectrometry-based targeted multiple reaction monitoring, and absolute quantifications, we assessed BA changes after 12 weeks of an average 12 g/day RS4-intake. Stool BA concentrations were lower post RS4 compared to the control, the two groups consuming similar macronutrients (n = 14/group). Partial least squares-discriminant analysis revealed distinct BA signatures in stool and plasma post interventions. The increased circulating BA concentrations were further investigated using linear mixed-effect modeling that controlled for potential confounders. A higher plasma abundance of several BA species post RS4 was observed (fold increase compared to control in parenthesis): taurocholic acid (1.92), taurodeoxycholic acid (1.60), glycochenodeoxycholic acid (1.58), glycodeoxycholic acid (1.79), and deoxycholic acid (1.77) (all, p < 0.05). Distinct microbiome ortholog-signatures were observed between RS4 and control groups (95% CI), derived using the Piphillin function-prediction algorithm and principal component analysis (PCA) of pre-existing 16S rRNA gene sequences. Association of Bifidobacterium adolescentis with secondary BA such as, deoxycholic acid (rho = 0.55, p = 0.05), glycodeoxycholic acid (rho = 0.65, p = 0.02), and taurodeoxycholic acid (rho = 0.56, p = 0.04) were observed in the RS4-group, but not in the control group (all, p > 0.05).ConclusionOur observations indicate a previously unknown in humans- RS4-associated systemic alteration of microbiota-derived secondary BA. Follow-up investigations of BA biosynthesis in the context of RS4 may provide molecular targets to understand and manipulate microbiome-host interactions.
Project description:Chronic enteropathy (CE) in cats encompasses food-responsive enteropathy, chronic inflammatory enteropathy (or inflammatory bowel disease), and low-grade intestinal T-cell lymphoma. While alterations in the gut metabolome have been extensively studied in humans and dogs with gastrointestinal disorders, little is known about the specific metabolic profile of cats with CE. As lipids take part in energy storage, inflammation, and cellular structure, investigating the lipid profile in cats with CE is crucial. This study aimed to measure fecal concentrations of various fatty acids, sterols, and bile acids. Fecal samples from 56 cats with CE and 77 healthy control cats were analyzed using gas chromatography-mass spectrometry, targeting 12 fatty acids, 10 sterols, and 5 unconjugated bile acids. Fecal concentrations of nine targeted fatty acids and animal-derived sterols were significantly increased in cats with CE. However, fecal concentrations of plant-derived sterols were significantly decreased in cats with CE. Additionally, an increased percentage of primary bile acids was observed in a subset of cats with CE. These findings suggest the presence of lipid maldigestion, malabsorption, and inflammation in the gastrointestinal tract of cats with CE. Understanding the lipid alterations in cats with CE can provide insights into the disease mechanisms and potential future therapeutic strategies.
Project description:Although epidemiological evidence in humans and bile acid feeding studies in rodents implicate bile acids as tumor promoters, the role of endogenous bile acids in colon carcinogenesis remains unclear. In this study, we exploited mice deficient in the ileal apical sodium-dependent bile acid transporter (ASBT, encoded by SLC10A2) in whom fecal bile acid excretion is augmented more than 10-fold. Wild-type and Asbt-deficient (Slc10a2 (-/-) ) male mice were treated with azoxymethane (AOM) alone to examine the development of aberrant crypt foci, the earliest histological marker of colon neoplasia and a combination of AOM and dextran sulfate sodium to induce colon tumor formation. Asbt-deficient mice exhibited a 54% increase in aberrant crypt foci, and 70 and 59% increases in colon tumor number and size, respectively. Compared to littermate controls, Asbt-deficient mice had a striking, 2-fold increase in the number of colon adenocarcinomas. Consistent with previous studies demonstrating a role for muscarinic and epidermal growth factor receptor signaling in bile acid-induced colon neoplasia, increasing bile acid malabsorption was associated with M3 muscarinic and epidermal growth factor receptor expression, and activation of extracellular signal-related kinase, a key post-receptor signaling molecule.
Project description:Due to the potential role of the gut microbiota and bile acids in the pathogenesis of both inflammatory bowel disease (IBD) and sporadic colorectal cancer, we aimed to determine whether these factors were associated with colorectal cancer in IBD patients. 215 IBD patients and 51 non-IBD control subjects were enrolled from 10 French IBD centers between September 2011 and July 2018. Fecal samples were processed for bacterial 16S rRNA gene sequencing and bile acid profiling. Demographic, clinical, endoscopic, and histological outcomes were recorded. Characteristics of IBD patients included: median age: 41.6 (IQR 22); disease duration 13.2 (13.1); 47% female; 21.9% primary sclerosing cholangitis; 109 patients with Crohn's disease (CD); 106 patients with ulcerative colitis (UC). The prevalence of cancer was 2.8% (6/215: 1 CD; 5 UC), high-grade dysplasia 3.7% (8/215) and low-grade dysplasia 7.9% (17/215). Lachnospira was decreased in IBD patients with cancer, while Agathobacter was decreased and Escherichia-Shigella increased in UC patients with any neoplasia. Bile acids were not associated with cancer or neoplasia. Unsupervised clustering identified three gut microbiota clusters in IBD patients associated with bile acid composition and clinical features, including a higher risk of neoplasia in UC in two clusters when compared to the third (relative risk (RR) 4.07 (95% CI 1.6-10.3, P < .01) and 3.56 (95% CI 1.4-9.2, P < .01)). In this multicentre observational study, a limited number of taxa were associated with neoplasia and exploratory microbiota clusters co-associated with clinical features, including neoplasia risk in UC. Given the very small number of cancers, the robustness of these findings will require assessment and validation in future studies.
Project description:Gut microbiome community structure is associated with Crohn's disease (CD) development and response to therapy. Bile acids (BAs) play a central role in modulating intestinal immune responses, and changes in gut bacterial communities can profoundly alter the intestinal BA pool. The liver synthesizes and conjugates primary bile acids (priBAs) that are then deconjugated, epimerized, and dehydroxylated by gut bacteria to produce secondary bile acids (secBAs). We investigated the relationship between the gut microbiome and the fecal BA pool in stool samples obtained from a well-characterized cohort of pediatric CD patients undergoing nutritional therapy to induce disease remission. We found that fecal BA composition was altered in a sub-group of CD patients who did not sustain remission. The microbial community structures associated with priBA and secBA-dominant profiles were distinct. In addition, the fecal BA concentrations were correlated with the abundance of distinct bacterial taxonomic groups. Finally, priBA dominant samples were associated with community-level decreases in enzymes for dehydroxylation but not deconjugation.