Project description:Lipids can be of endogenous or exogenous origin and affect diverse biological functions, including cell membrane maintenance, energy management and cellular signalling. Here, we report >800 lipid species, many of which are associated with health-to-disease transitions in diabetes, ageing and inflammation, as well as cytokine-lipidome networks. We performed comprehensive longitudinal lipidomic profiling and analysed >1,500 plasma samples from 112 participants followed for up to 9 years (average 3.2 years) to define the distinct physiological roles of complex lipid subclasses, including large and small triacylglycerols, ester- and ether-linked phosphatidylethanolamines, lysophosphatidylcholines, lysophosphatidylethanolamines, cholesterol esters and ceramides. Our findings reveal dynamic changes in the plasma lipidome during respiratory viral infection, insulin resistance and ageing, suggesting that lipids may have roles in immune homoeostasis and inflammation regulation. Individuals with insulin resistance exhibit disturbed immune homoeostasis, altered associations between lipids and clinical markers, and accelerated changes in specific lipid subclasses during ageing. Our dataset based on longitudinal deep lipidome profiling offers insights into personalized ageing, metabolic health and inflammation, potentially guiding future monitoring and intervention strategies.
Project description:Lipids are essential to brain functions, yet they remain largely unexplored. Here we investigated the lipidome composition of prefrontal cortex gray matter in 396 cognitively healthy individuals with ages spanning 100 years, as well as 67 adult individuals diagnosed with autism (ASD), schizophrenia (SZ), and Down syndrome (DS). Of the 5024 detected lipids, 95% showed significant age-dependent concentration differences clustering into four temporal stages, and resulting in a gradual increase in membrane fluidity in individuals ranging from newborn to nonagenarian. Aging affects 14% of the brain lipidome with late-life changes starting predominantly at 50-55 years of age-a period of general metabolic transition. All three diseases alter the brain lipidome composition, leading-among other things-to a concentration decrease in glycerophospholipid metabolism and endocannabinoid signaling pathways. Lipid concentration decreases in SZ were further linked to genetic variants associated with disease, indicating the relevance of the lipidome changes to disease progression.
Project description:BackgroundMenopause consists of a physiological process in women between 40 and 50 years of age, and it has substantial consequences for health, ranging from disturbances in lipid and glycidic metabolism to psychological stress and sleep alterations, thereby increasing women's risk of cardiovascular diseases. Here, we attempted to identify potential lipid alterations not identified by the classic methods.Methods and resultsWe analyzed the serum lipid profile in 40 women in pre- and post-menopause using a lipidomic approach and mass spectrometry. Lipid species presented increased concentrations, with a difference of more than 25% post-menopause and with the ceramides (N.C23:0.Cer, N.C23:0(OH).Cer and N.C24:0(OH).Cer) standing out with a fold change of 1.68, 1.59, and 1.58, respectively. It was also observed that 14 metabolites presented a significant difference in the average concentrations between pre- and post-menopause, especially the ceramide species. Strong and positive correlations were identified between various metabolites and fasting glucose, glycated hemoglobin, total cholesterol, LDL, and triglycerides. Of note were the association ceramide (N.C10:0.Cer) and lysophosphatidylethanolamine (LPE.a.C18:0) between fasting glucose and glycated hemoglobin.ConclusionThis study detected lipid alterations, especially in ceramides, post-menopause, as well as correlations with glycidic and lipid markers, which may in the future be useful to investigate diseases associated with menopause.
Project description:Numerous brain imaging studies have reported white matter alterations in schizophrenia, but the lipidome analysis of the corresponding tissue remains incomplete. In this study, we investigated the lipidome composition of six subcortical white matter regions corresponding to major axonal tracks in both control subjects and schizophrenia patients. All six regions exhibited a consistent pattern of quantitative lipidome alterations in schizophrenia, involving myelin-forming and mitochondria associated lipid classes. While alteration levels of myelin-forming lipids, particularly sphingolipids, aligned with the extent of the myelin changes reported in structural brain imaging studies, a significant decrease of mitochondria in the white matter, indicated by the lipidome alterations, was not previously investigated. To verify this effect, we performed lipidome analysis in a larger set of individuals and in the mitochondria-enriched membrane fraction, as well as directly quantified mitochondrial content. Our results suggest a substantial reduction of the mitochondrial quotient accompanied by the imbalance in myelin lipids in schizophrenia white matter.
Project description:4-hydroxytamoxifen (OHT) is an anti-cancer drug that induces apoptosis in breast cancer cells. Although changes in lipid levels and mitochondrial respiration have been observed in OHT-treated cells, the overall mechanisms underlying these metabolic alterations are poorly understood. In this study, time-series metabolomics and lipidomics were used to analyze the changes in metabolic profiles induced by OHT treatment in the MCF-7 human breast cancer cell line. Lipidomic and metabolomic analyses revealed increases in ceramide, diacylglycerol and triacylglycerol, and decreases in citrate, respectively. Gene expression analyses revealed increased expression of ATP-dependent citrate lyase (ACLY) and subsequent fatty acid biosynthetic enzymes, suggesting that OHT-treated MCF-7 cells activate citrate-to-lipid metabolism. The significance of the observed metabolic changes was evaluated by co-treating MCF-7 cells with OHT and ACLY or a diacylglycerol O-acyltransferase 1 (DGAT1) inhibitor. Co-treatment ameliorated cell death and reduced mitochondrial membrane potential compared to that in OHT treatment alone. The inhibition of cell death by co-treatment with an ACLY inhibitor has been observed in other breast cancer cell lines. These results suggest that citrate-to-lipid metabolism is critical for OHT-induced cell death in breast cancer cell lines.
Project description:Lipids play an important role in biological systems and have the potential to serve as biomarkers in medical applications. Advances in lipidomics allow identification of hundreds of lipid species from biological samples. However, a systems biological analysis of the lipidome, by incorporating pathway information remains challenging, leaving lipidomics behind compared to other omics disciplines. An especially uncharted territory is the integration of statistical and network-based approaches for studying global lipidome changes. Here we developed the Lipid Network Explorer (LINEX), a web-tool addressing this gap by providing a way to visualize and analyze functional lipid metabolic networks. It utilizes metabolic rules to match biochemically connected lipids on a species level and combine it with a statistical correlation and testing analysis. Researchers can customize the biochemical rules considered, to their tissue or organism specific analysis and easily share them. We demonstrate the benefits of combining network-based analyses with statistics using publicly available lipidomics data sets. LINEX facilitates a biochemical knowledge-based data analysis for lipidomics. It is availableas a web-application and as a publicly available docker container.
Project description:Aging in the epidermis is marked by a gradual decline in barrier function, impaired wound healing, hair loss, and an increased risk of cancer. This could be due to age-related changes in the properties of epidermal stem cells and defective interactions with their microenvironment. Currently, no biochemical tools are available to detect and evaluate the aging of epidermal stem cells. The cellular glycosylation is involved in cell-cell communications and cell-matrix adhesions in various physiological and pathological conditions. Here, we explored the changes of glycans in epidermal stem cells as a potential biomarker of aging. Using lectin microarray, we performed a comprehensive glycan profiling of freshly isolated epidermal stem cells from young and old mouse skin. Epidermal stem cells exhibited a significant difference in glycan profiles between young and old mice. In particular, the binding of a mannose-binder rHeltuba was decreased in old epidermal stem cells, whereas that of an α2-3Sia-binder rGal8N increased. These glycan changes were accompanied by upregulation of sialyltransferase, St3gal2 and St6gal1 and mannosidase Man1a genes in old epidermal stem cells. The modification of cell surface glycans by overexpressing these glycogenes leads to a defect in the regenerative ability of epidermal stem cells in culture. Hence, our study suggests the age-related global alterations in cellular glycosylation patterns and its potential contribution to the stem cell function. These glycan modifications detected by lectins may serve as molecular markers for aging, and further functional studies will lead us to a better understanding of the process of skin aging.
Project description:Lipidomics research could provide insights of pathobiological mechanisms in Alzheimer's disease. This study explores a battery of plasma lipids that can differentiate Alzheimer's disease (AD) patients from healthy controls and determines whether lipid profiles correlate with genetic risk for AD. AD plasma samples were collected from the Sydney Memory and Ageing Study (MAS) Sydney, Australia (aged range 75-97 years; 51.2% male). Untargeted lipidomics analysis was performed by liquid chromatography coupled-mass spectrometry (LC-MS/MS). We found that several lipid species from nine lipid classes, particularly sphingomyelins (SMs), cholesterol esters (ChEs), phosphatidylcholines (PCs), phosphatidylethanolamines (PIs), phosphatidylinositols (PIs), and triglycerides (TGs) are dysregulated in AD patients and may help discriminate them from healthy controls. However, when the lipid species were grouped together into lipid subgroups, only the DG group was significantly higher in AD. ChEs, SMs, and TGs resulted in good classification accuracy using the Glmnet algorithm (elastic net penalization for the generalized linear model [glm]) with more than 80% AUC. In general, group lipids and the lipid subclasses LPC and PE had less classification accuracy compared to the other subclasses. We also found significant increases in SMs, PIs, and the LPE/PE ratio in human U251 astroglioma cell lines exposed to pathophysiological concentrations of oligomeric Aβ42. This suggests that oligomeric Aβ42 plays a contributory, if not causal role, in mediating changes in lipid profiles in AD that can be detected in the periphery. In addition, we evaluated the association of plasma lipid profiles with AD-related single nucleotide polymorphisms (SNPs) and polygenic risk scores (PRS) of AD. We found that FERMT2 and MS4A6A showed a significantly differential association with lipids in all lipid classes across disease and control groups. ABCA7 had a differential association with more than half of the DG lipids (52.63%) and PI lipids (57.14%), respectively. Additionally, 43.4% of lipids in the SM class were differentially associated with CLU. More than 30% of lipids in ChE, PE, and TG classes had differential associations with separate genes (ChE-PICALM, SLC24A4, and SORL1; PE-CLU and CR1; TG-BINI) between AD and control group. These data may provide renewed insights into the pathobiology of AD and the feasibility of identifying individuals with greater AD risk.
Project description:Traumatic brain injury (TBI) poses a major health challenge, with tens of millions of new cases reported globally every year. Brain damage resulting from TBI can vary significantly due to factors including injury severity, injury mechanism and exposure to repeated injury events. Therefore, there is need for robust blood biomarkers. Serum from Sprague Dawley rats was collected at several timepoints within 24 h of mild single or repeat closed head impacts. Serum samples were analyzed via ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in positive and negative ion modes. Known lipid species were identified through matching to in-house tandem MS databases. Lipid biomarkers have a unique potential to serve as objective molecular measures of injury response as they may be liberated to circulation more readily than larger protein markers. Machine learning and feature selection approaches were used to construct lipid panels capable of distinguishing serum from injured and uninjured rats. The best multivariate lipid panels had over 90% cross-validated sensitivity, selectivity, and accuracy. These mapped onto sphingolipid signaling, autophagy, necroptosis and glycerophospholipid metabolism pathways, with Benjamini adjusted p-values less than 0.05. The novel lipid biomarker candidates identified provide insight into the metabolic pathways altered within 24 h of mild TBI.
Project description:The heat shock response (HSR) is a conserved cellular mechanism critical for adaptation to environmental and physiological stressors, with broad implications for cell survival, immune responses, and cancer biology. While the HSR has been extensively studied at the proteomic and transcriptomic levels, the role of lipid metabolism and membrane reorganization remains underexplored. Here, we integrate mass spectrometry-based lipidomics with RNA sequencing to characterize global lipidomic and transcriptomic changes in HeLa cells exposed to three conditions: control, heat shock (HS), and HS with eight hours of recovery. Heat shock-induced extensive lipid remodeling, including significant increases in fatty acids, glycerophospholipids, and sphingolipids, with partial normalization during recovery. Transcriptomic analysis identified over 2,700 upregulated and 2,300 downregulated genes under heat shock, with GO enrichment suggesting potential transcriptional contributions to lipid metabolism. However, transcriptional changes alone did not fully explain the observed lipidomic shifts, suggesting additional layers of regulation. Joint pathway analysis revealed enrichment in glycerophospholipid and sphingolipid metabolism, while network analysis identified lipid transport regulators (STAB2, APOB), stress-linked metabolic nodes (KNG1), and persistent sphingolipid enrichment during recovery. These findings provide a comprehensive framework for understanding lipid-mediated mechanisms of the HSR and highlight the importance of multi-omics integration in stress adaptation and disease biology.