Project description:Non-alcoholic fatty liver disease (NAFLD), which affects both adults and children, is the most common liver disorder worldwide. NAFLD is characterized by excess fat accumulation in the liver in the absence of significant alcohol use. NAFLD is strongly associated with obesity, insulin resistance, metabolic syndrome, as well as specific genetic polymorphisms. Severe NAFLD cases can further progress to cirrhosis, hepatocellular carcinoma (HCC), or cardiovascular complications. Here, we describe the pathophysiological features and critical genetic variants associated with NAFLD. Recent advances in genome-engineering technology have provided a new opportunity to generate in vitro and in vivo models that reflect the genetic abnormalities of NAFLD. We review the currently developed NAFLD models generated using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) genome editing. We further discuss unique features of CRISPR/Cas9 and Cas9 variants, including base editors and prime editor, that are useful for replicating genetic features specific to NAFLD. We also compare advantages and limitations of currently available methods for delivering genome-editing tools necessary for optimal genome editing. This review should provide helpful guidance for selecting "good fit" genome-editing tools and appropriate gene-delivery methods for the successful development of NAFLD models and clinical therapeutics.
Project description:BackgroundThe complications of Nonalcoholic Fatty Liver Disease (NAFLD) are dependent on the presence of advanced fibrosis. Given the high prevalence of NAFLD in the US, the optimal evaluation of NAFLD likely involves triage by a primary care physician (PCP) with advanced disease managed by gastroenterologists.MethodsWe compared the cost-effectiveness of fibrosis risk-assessment strategies in a cohort of 10,000 simulated American patients with NAFLD performed in either PCP or referral clinics using a decision analytical microsimulation state-transition model. The strategies included use of vibration-controlled transient elastography (VCTE), the NAFLD fibrosis score (NFS), combination testing with NFS and VCTE, and liver biopsy (usual care by a specialist only). NFS and VCTE performance was obtained from a prospective cohort of 164 patients with NAFLD. Outcomes included cost per quality adjusted life year (QALY) and correct classification of fibrosis.ResultsRisk-stratification by the PCP using the NFS alone costs $5,985 per QALY while usual care costs $7,229/QALY. In the microsimulation, at a willingness-to-pay threshold of $100,000, the NFS alone in PCP clinic was the most cost-effective strategy in 94.2% of samples, followed by combination NFS/VCTE in the PCP clinic (5.6%) and usual care in 0.2%. The NFS based strategies yield the best biopsy-correct classification ratios (3.5) while the NFS/VCTE and usual care strategies yield more correct-classifications of advanced fibrosis at the cost of 3 and 37 additional biopsies per classification.ConclusionRisk-stratification of patients with NAFLD primary care clinic is a cost-effective strategy that should be formally explored in clinical practice.
Project description:Kupffer cells (KCs) are tissue-resident macrophages which colonize the liver early during embryogenesis. KCs start to acquire a tissue-specific transcriptional signature immediately after colonizing the liver, mature together with the tissue, and adapt to the tissue?s functions. Throughout development and adulthood, KCs have distinct core functions that are essential for liver and organismal homeostasis, such as supporting fetal erythropoiesis as well as postnatal erythrocyte recycling and liver metabolism. However, whether perturbations of macrophage core functions during development contribute to or cause disease at postnatal stages is poorly understood. Here, we utilize a mouse model of maternal obesity to perturb KC functions during gestation. We show that offspring exposed to maternal obesity develop fatty liver disease, driven by aberrant developmental programming of KCs that persists into adulthood. Programmed KCs mediate lipid uptake by hepatocytes through apolipoprotein secretion. KC depletion in neonates born to obese mothers, followed by replenishment with exogenous monocytes, rescues the fatty liver disease. The transcriptional programming of KCs and the fatty liver disease phenotype are also rescued by genetic depletion of hypoxia-inducible factor alpha (Hif1?) in macrophages during gestation. These results establish developmental perturbation of KC functions as a cause for the development of fatty liver disease in adult life and, thereby, place fetal-derived macrophages as intergenerational messengers within the concept of developmental origins of health and diseases.
Project description:Because of global epidemics of obesity and type 2 diabetes, the prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing both in Europe and the United States, becoming one of the most frequent causes of chronic liver disease and predictably, one of the leading causes of liver transplantation both for end-stage liver disease and hepatocellular carcinoma. For most transplant teams around the world this will raise many challenges in terms of pre- and post-transplant management. Here we review the multifaceted impact of NAFLD on liver transplantation and will discuss: (1) NAFLD as a frequent cause of cryptogenic cirrhosis, end-stage chronic liver disease, and hepatocellular carcinoma; (2) prevalence of NAFLD as an indication for liver transplantation both in Europe and the United States; (3) the impact of NAFLD on the donor pool; (4) the access of NAFLD patients to liver transplantation and their management on the waiting list in regard to metabolic, renal and vascular comorbidities; (5) the prevalence and consequences of post-transplant metabolic syndrome, recurrent and de novo NAFLD; (6) the alternative management and therapeutic options to improve the long-term outcomes with particular emphasis on the correction and control of metabolic comorbidities.
Project description:The global prevalence of nonalcoholic fatty liver disease (NAFLD) or metabolic associated fatty liver disease (MAFLD), as it is now known, has gradually increased. NAFLD is a disease with a spectrum of stages ranging from simple fatty liver (steatosis) to a severe form of steatosis, nonalcoholic steatohepatitis (NASH), which could progress to irreversible liver injury (fibrosis) and organ failure, and in some cases hepatocellular carcinoma (HCC). Although a liver biopsy remains the gold standard for accurate detection of this condition, it is unsuitable for clinical screening due to a higher risk of death. There is thus an increased need to find alternative techniques or tools for accurate diagnosis. Early detection for NASH matters for patients because NASH is the marker for severe disease progression. This review summarizes the current noninvasive tools for NAFLD diagnosis and their performance. We also discussed potential and newer alternative tools for diagnosing NAFLD.
Project description:Nonalcoholic fatty liver disease (NAFLD) is a common cause of hepatic abnormalities worldwide. Nonalcoholic steatohepatitis (NASH) is part of the spectrum of NAFLD and leads to progressive liver disease, such as cirrhosis and hepatocellular carcinoma. In NASH patient, fibrosis represents the major predictor of liver-related mortality; therefore, it is important to have an early and accurate diagnosis of NASH. The current gold standard for the diagnosis of NASH is still liver biopsy. The development of biomarkers able to predict disease severity, prognosis, as well as response to therapy without the need for a biopsy is the focus of most up-to-date genomic, transcriptomic, proteomic, and metabolomic research. In the future, patients might be diagnosed and treated according to their molecular signatures. In this short review, we discuss how information from genomics, proteomics, and metabolomics contribute to the understanding of NAFLD pathogenesis.
Project description:Non-alcoholic fatty liver disease (NAFLD) is estimated to affect 25% of the world’s population and its prevalence is increasing with the rise in obesity. The evolution of this disease includes different pathological stages: steatosis, inflammation, fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Liver biopsy stands as the gold standard for NAFLD assessment despite its invasive nature and limited performance. Liver fibrosis is the most important clinical parameter, as it is closely related to mortality, and biopsies are only considered when advanced fibrosis is suspected. This scenario makes the finding of a non-invasive and reliable biomarker an urgent need for an accurate diagnosis. To this end, we first performed a discovery study on 159 plasma samples from histologically characterised NAFLD patients using mass spectrometry (MS)-based quantitative proteomics. Insulin-like growth factor-binding protein complex acid labile (ALS, P35858) and Galectin-3-binding protein (LG3BP, Q08380) were selected for a verification by enzyme-linked immunosorbent assay (ELISA) in the same cohort and finally validated in an independent NAFLD cohort of 200 plasma samples.ALS and LG3BP were validated as advanced liver fibrosis biomarkers and successfully included in a panel with FibroTest variables. ELISA kits availability would allow to achieve relatively fast clinical translation if further investigations in larger cohorts confirm these results.
Project description:Purpose: Study transcriptome differences between biofilm, planktonic and stationary cultures. Methods: Total mRNA from in vitro cultures was extracted and sequenced using Ion Torrent PGM sequencer. Results: Characteristic transcriptomic profile was observed for biofilm, planktonic and stationary cultures. Biofilm and planktonic were similar biological states. Conclusions: Results suggest that H. parasuis F9 has more active metabolism during biofilm or planktonic growth when compared to stationary culture. Some identified membrane-related genes could play an important role in biofilm life. RNA profiles of 36 hours biofilm or planktonic cultures were generated and compared with stationary culture profile.