Project description:Flash proteotyping is a methodology for ultra-fast identification of microorganisns by tandem mass spectrometry. Here, we obtained results on five reference strains and ten new bacterial isolates. The methodology is based on direct sample infusion into the mass spectromete and an original, highly sensitive procedure for data processing and taxonomic identification.
Project description:Acetate, propionate and butyrate are the main short-chain fatty acids (SCFAs) that arise from the fermentation of fibers by the colonic microbiota. While many studies focus on the regulatory role of SCFAs, their quantitative role as a catabolic or anabolic substrate for the host has received relatively little attention. To investigate this aspect, we infused conscious mice with physiological quantities of stable isotopes [1-13C]acetate, [2-13C]propionate or [2,4-13C2]butyrate directly into the cecum, which is the natural production site in mice, and analyzed their interconversion by the microbiota as well as their metabolism by the host. Cecal interconversion - pointing to microbial cross-feeding - was high between acetate and butyrate, low between butyrate and propionate and almost absent between acetate and propionate. As much as 62% of infused propionate was used in whole-body glucose production, in line with its role as gluconeogenic substrate. Conversely, glucose synthesis from propionate accounted for 69% of total glucose production. The synthesis of palmitate and cholesterol in the liver was high from cecal acetate (2.8% and 0.7%, respectively) and butyrate (2.7% and 0.9%, respectively) as substrates, but low or absent from propionate (0.6% and 0.0%, respectively). Label incorporation due to chain elongation of stearate was approximately 8-fold higher than de novo synthesis of stearate. Microarray data suggested that SCFAs exert only a mild regulatory effect on the expression of genes involved in hepatic metabolic pathways during the 6h infusion period. Altogether, gut-derived acetate, propionate and butyrate play important roles as substrates for glucose, cholesterol and lipid metabolism. Mice were infused in cecum with stably-labelled isotopes of the three main short chain fatty acids or control solution. After 6 hrs, livers were removed and pooled RNA samples were subjected to gene expression profiling.
Project description:Reducing the incidence and mortality rates for clear cell renal cell carcinoma (ccRCC) remains a significant clinical challenge with poor 5-year survival rates. A unique tissue cohort was assembled of matched ccRCC and distal nontumor tissues (n = 20) associated with moderate risk of disease progression, half of these from individuals who progressed to metastatic disease and the other half who remained disease free. These tissues were used for MALDI imaging MS profiling of proteins in the 2-20 kDa range, resulting in a panel of 108 proteins that had potential disease-specific expression patterns. Protein lysates from the same tissues were analyzed by MS/MS, resulting in identification of 56 proteins of less than 20 kDa molecular weight. The same tissues were also used for global lipid profiling analysis by MALDI-FT-ICR MS. From the cumulative protein and lipid expression profile data, a refined panel of 26 proteins and 39 lipid species was identified that could either distinguish tumor from nontumor tissues, or tissues from recurrent disease progressors from nonrecurrent disease individuals. This approach has the potential to not only improve prognostic assessment and enhance postoperative surveillance, but also to inform on the underlying biology of ccRCC progression.
Project description:Matrix assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) has the ability to provide an enormous amount of information on the abundances and spatial distributions of molecules within biological tissues. The rapid progress in the development of this technology significantly improves our ability to analyze smaller and smaller areas and features within tissues. The mammalian eye has evolved over millions of years to become an essential asset for survival, providing important sensory input of an organism's surroundings. The highly complex sensory retina of the eye is comprised of numerous cell types organized into specific layers with varying dimensions, the thinnest of which is the 10 ?m retinal pigment epithelium (RPE). This single cell layer and the photoreceptor layer contain the complex biochemical machinery required to convert photons of light into electrical signals that are transported to the brain by axons of retinal ganglion cells. Diseases of the retina, including age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy, occur when the functions of these cells are interrupted by molecular processes that are not fully understood. In this report, we demonstrate the use of high spatial resolution MALDI IMS and FT-ICR tandem mass spectrometry in the Abca4(-/-) knockout mouse model of Stargardt disease, a juvenile onset form of macular degeneration. The spatial distributions and identity of lipid and retinoid metabolites are shown to be unique to specific retinal cell layers.
Project description:Methanococcus maripaludis is a methanogenic archaeon. Within its genome, there are two operons for membrane associated hydrogenases, eha and ehb. To investigate the regulation of ehb on the cell, an S40 mutant was constructed in such a way that a portion of the ehb operon was replaced by pac cassette in the wild type parental strain S2 (done by Whitman's group at the University of Georgia). The S40 and S2 strains were grown in 14N and 15N media with acetate separately. A biological replicate was made by switching the media. Mass spectrometry based quantitative proteomics were done on the mixtures to investigate the differences in expression patterns between S40 and S2. Keywords: isotope labeling mass spectrometry, quantitative proteomics
Project description:Skin surface lipids (SSLs) arising from both sebaceous glands and skin removal form a complex lipid mixture composed of free fatty acids and neutral lipids. High-temperature gas chromatography coupled with electron impact or chemical ionization mass spectrometry was used to achieve a simple analytical protocol, without prior separation in classes and without prior cleavage of lipid molecules, in order to obtain simultaneously i) a qualitative characterization of the individual SSLs and ii) a quantitative evaluation of lipid classes. The method was first optimized with SSLs collected from the forehead of a volunteer. More than 200 compounds were identified in the same run. These compounds have been classified in five lipid classes: free fatty acids, hydrocarbons, waxes, sterols, and glycerides. The advantage to this method was it provided structural information on intact compounds, which is new for cholesteryl esters and glycerides, and to obtain detailed fingerprints of the major SSLs. These fingerprints were used to compare the SSL compositions from different body areas. The squalene/cholesterol ratio was used to determine the balance between sebaceous secretion and skin removal. This method could be of general interest in fields where complex lipid mixtures are involved.
Project description:Characterization of nonpolar lipids is crucial due to their essential biological functions and ability to exist in various isomeric forms. In this study, we introduce the N-H aziridination method to target carbon-carbon double bonds (C═C bonds) in nonpolar sterol lipids. The resulting fragments are readily dissociated upon collision-induced dissociation, generating specific fragment ions for C═C bond position determination and fingerprint fragments for backbone characterization. This method significantly enhances lipid ionization efficiency, thereby improving the sensitivity and accuracy of nonpolar lipid analysis. We demonstrated that aziridination of sterols leads to distinctive fragmentation pathways for chain and ring C═C bonds, enabling the identification of sterol isomers such as desmosterol and 7-dehydrocholesterol. Furthermore, aziridination can assist in identifying the sterol backbone by providing fingerprint tandem mass spectra. We also demonstrated the quantitative capacity of this approach with a limit of detection of 10 nM in the solvent mixture of methanol and water. To test the feasibility of this method in complex biological samples, we used mouse prostate cancerous tissues and found significant differences in nonpolar lipid profiles between healthy and cancerous samples. The high efficiency and specificity of aziridination-assisted mass spectrometric analysis, as well as its quantitative analysis ability, make it highly suitable for broad applications in nonpolar lipid research.
Project description:Profiling and imaging MALDI mass spectrometry (MS) allows detection and localization of biomolecules in tissue, of which lipids are a major component. However, due to the in situ nature of this technique, complexity of tissue and need for a chemical matrix, the recorded signal is complex and can be difficult to assign. Ion mobility adds a dimension that provides coarse shape information, separating isobaric lipids, peptides, and oligonucleotides along distinct familial trend lines before mass analysis. Previous work using MALDI-ion mobility mass spectrometry to analyze and image lipids has been conducted mainly in positive ion mode, although several lipid classes ionize preferentially in negative ion mode. This work highlights recent data acquired in negative ion mode to detect glycerophosphoethanolamines (PEs), glycerophosphoserines (PSs), glycerophosphoglycerols (PGs), glycerolphosphoinositols (PIs), glycerophosphates (PAs), sulfatides (STs), and gangliosides from standard tissue extracts and directly from mouse brain tissue. In particular, this study focused on changes in ion mobility based upon lipid head groups, composition of radyl chain (# of carbons and double bonds), diacyl versus plasmalogen species, and hydroxylation of species. Finally, a MALDI-ion mobility imaging run was conducted in negative ion mode, resulting in the successful ion mapping of several lipid species.
Project description:Matrix-assisted laser desorption/ionization mass spectrometry imaging allows for the study of metabolic activity in the tumor microenvironment of brain cancers. The detectable metabolites within these tumors are contingent upon the choice of matrix, deposition technique, and polarity setting. In this study, we compared the performance of three different matrices, two deposition techniques, and the use of positive and negative polarity in two different brain cancer types and across two species. Optimal combinations were confirmed by a comparative analysis of lipid and small-molecule abundance by using liquid chromatography-mass spectrometry and RNA sequencing to assess differential metabolites and enzymes between normal and tumor regions. Our findings indicate that in the tumor-bearing brain, the recrystallized α-cyano-4-hydroxycinnamic acid matrix with positive polarity offered superior performance for both detected metabolites and consistency with other techniques. Beyond these implications for brain cancer, our work establishes a workflow to identify optimal matrices for spatial metabolomics studies.
Project description:The mammalian dorsal root ganglia (DRG) are located on the dorsal roots of the spinal nerves and contain cell bodies of primary sensory neurons. DRG cells have been classified into subpopulations based on their size, morphology, intracellular markers, response to stimuli, and neuropeptides. To understand the connections between DRG chemical heterogeneity and cellular function, we performed optically guided, high-throughput single cell profiling using sequential matrix-assisted laser desorption/ionization mass spectrometry (MS) to detect lipids, peptides, and several proteins in individual DRG cells. Statistical analysis of the resulting mass spectra allows stratification of the DRG population according to cellular morphology and, presumably, major cell types. A subpopulation of small cells contained myelin proteins, which are abundant in Schwann cells, and mass spectra of several larger cells contained peaks matching neurofilament, vimentin, myelin basic protein S, and thymosin beta proteins. Of the over 1000 cells analyzed, approximately 78 % produced putative peptide-rich spectra, allowing the population to be classified into three distinct cell types. Two signals with m/z 4404 and 5487 were exclusively observed in a cell type, but could not be matched to results of our previous liquid chromatography-MS analyses.