Non-targeted metabolomics screen comparing metabolite profiles of serum from PDAC-bearing mice that received 1% choline supplementation or control diet using high-resolution, high-performance LC-MS/MS analysis.
Project description:BackgroundLiquid chromatography coupled to mass spectrometry (LC/MS) is an important analytical technology for e.g. metabolomics experiments. Determining the boundaries, centres and intensities of the two-dimensional signals in the LC/MS raw data is called feature detection. For the subsequent analysis of complex samples such as plant extracts, which may contain hundreds of compounds, corresponding to thousands of features -- a reliable feature detection is mandatory.ResultsWe developed a new feature detection algorithm centWave for high-resolution LC/MS data sets, which collects regions of interest (partial mass traces) in the raw-data, and applies continuous wavelet transformation and optionally Gauss-fitting in the chromatographic domain. We evaluated our feature detection algorithm on dilution series and mixtures of seed and leaf extracts, and estimated recall, precision and F-score of seed and leaf specific features in two experiments of different complexity.ConclusionThe new feature detection algorithm meets the requirements of current metabolomics experiments. centWave can detect close-by and partially overlapping features and has the highest overall recall and precision values compared to the other algorithms, matchedFilter (the original algorithm of XCMS) and the centroidPicker from MZmine. The centWave algorithm was integrated into the Bioconductor R-package XCMS and is available from (http://www.bioconductor.org/).
Project description:Background: Testosterone is an androgenic hormone that plays important roles in both males and females. The circulating levels of total testosterone vary from 1 to 1480 ng/dL. High-throughput immunoassays often lack accuracy in lower concentration ranges (below 100 ng/dL), particularly when used for females or children. To address this limitation, we developed a total testosterone LC-MS/MS assay on three instruments. Methods: Sample preparation began with the dilution and conditioning of 200 µL of serum. A supported liquid extraction cartridge was used to extract the analyte from biological matrices. Chromatographic separation was achieved using a C18 column with a runtime of 5 min per sample. This assay was validated on a Triple Quad 6500 and an API 4500 instrument. Results: Method validation was carried out according to the CLSI C62-ED2 guideline and our hospital protocol. The within-day coefficient of variation (CV) was less than 10% and the between-day CV was less than 15%. The assay had a limit of quantitation of 0.5 ng/dL with an analyte measure range of 2-1200 ng/dL. A comparison using Deming regression and Bland-Altman plots showed that this assay correlated well with a reference method. The results from the API 4500 and an Orbitrap were consistent with those from the TQ 6500. Both serum-separator tubes (BD) and serum-activator tubes were found to be suitable. Conclusions: We successfully developed and validated a robust total testosterone LC-MS/MS assay for routine clinical testing. This assay was harmonized across two triple quadrupole instruments and one high-resolution mass spectrometer.
Project description:Highly specialized cells are fundamental for proper functioning of complex organs. Variations in cell-type specific gene expression and protein composition have been linked to a variety of diseases. Although single cell technologies have emerged as valuable tools to address this cellular heterogeneity, a majority of these workflows lack sufficient in situ resolution for functional classification of cells and are associated with extremely long analysis time, especially when it comes to in situ proteomics. In addition, lack of understanding of single cell dynamics within their native environment limits our ability to explore the altered physiology in disease development. This limitation is particularly relevant in the mammalian brain, where different cell types perform unique functions and exhibit varying sensitivities to insults. The hippocampus, a brain region crucial for learning and memory, is of particular interest due to its obvious involvement in various neurological disorders. Here, we present a combination of experimental and data integration approaches for investigation of cellular heterogeneity and functional disposition within the mouse brain hippocampus using MALDI Imaging mass spectrometry (MALDI-IMS) and shotgun proteomics (LC-MS/MS) coupled with laser-capture microdissection (LCM) along with spatial transcriptomics. Within the dentate gyrus granule cells we identified two proteomically distinct cellular subpopulations that are characterized by a substantial number of discriminative proteins. These cellular clusters contribute to the overall functionality of the dentate gyrus by regulating redox homeostasis, mitochondrial organization, RNA processing, and microtubule organization. Importantly, most of the identified proteins matched their transcripts, verifying the in situ protein identification and supporting their functional analyses. By combining high-throughput spatial proteomics with transcriptomics, our approach enables reliable near-single-cell scale identification of proteins and profiling of inter-cellular heterogeneity within similar cell-types in tissues. This methodology has the potential to be applied to different biological conditions and tissues, providing a deeper understanding of cellular subpopulations in situ.
Project description:BackgroundLiquid chromatography-mass spectrometry (LC-MS) utilizing the high-resolution power of an orbitrap is an important analytical technique for both metabolomics and proteomics. Most important feature of the orbitrap is excellent mass accuracy. Thus, it is necessary to convert raw data to accurate and reliable m/z values for metabolic fingerprinting by high-resolution LC-MS.ResultsIn the present study, we developed a novel, easy-to-use and straightforward m/z detection method, AMDORAP. For assessing the performance, we used real biological samples, Bacillus subtilis strains 168 and MGB874, in the positive mode by LC-orbitrap. For 14 identified compounds by measuring the authentic compounds, we compared obtained m/z values with other LC-MS processing tools. The errors by AMDORAP were distributed within ±3 ppm and showed the best performance in m/z value accuracy.ConclusionsOur method can detect m/z values of biological samples much more accurately than other LC-MS analysis tools. AMDORAP allows us to address the relationships between biological effects and cellular metabolites based on accurate m/z values. Obtaining the accurate m/z values from raw data should be indispensable as a starting point for comparative LC-orbitrap analysis. AMDORAP is freely available under an open-source license at http://amdorap.sourceforge.net/.
Project description:Peptidoglycan (PG) is the exoskeleton of bacterial cells and is required for their viability, growth, and cell division. Unlike most bacteria, mycobacteria possess an atypical PG characterized by a high degree of unique linkages and chemical modifications which most likely serve as important determinants of virulence and pathogenesis in mycobacterial diseases. Despite this important role, the chemical composition and molecular architecture of mycobacterial PG have yet to be fully determined. Here we determined the chemical composition of PG from Mycobacterium smegmatis using high-resolution liquid chromatography-mass spectrometry. Purified cell walls from the stationary phase were digested with mutanolysin and compositional analysis was performed on 130 muropeptide ions that were identified using an in silico PG library. The relative abundance for each muropeptide ion was measured by integrating the extracted-ion chromatogram. The percentage of crosslink per PG subunit was measured at 45%. While both 3→3 and 4→3 transpeptide cross-linkages were found in PG dimers, a high abundance of 3→3 linkages was found associated with the trimers. Approximately 43% of disaccharides in the PG of M. smegmatis showed modifications by acetylation or deacetylation. A significant number of PG trimers are found with a loss of 41.00 amu that is consistent with N-deacetylation, whereas the dimers show a gain of 42.01 amu corresponding to O-acetylation of the PG disaccharides. This suggests a possible role of PG acetylation in the regulation of cell wall homeostasis in M. smegmatis. Collectively, these data report important novel insights into the ultrastructure of mycobacterial PG.
Project description:LC-MS/MS-based proteomics studies rely on stable analytical system performance that can be evaluated by objective criteria. The National Institute of Standards and Technology (NIST) introduced the MSQC software to compute diverse metrics from experimental LC-MS/MS data, enabling quality analysis and quality control (QA/QC) of proteomics instrumentation. In practice, however, several attributes of the MSQC software prevent its use for routine instrument monitoring. Here, we present QuaMeter, an open-source tool that improves MSQC in several aspects. QuaMeter can directly read raw data from instruments manufactured by different vendors. The software can work with a wide variety of peptide identification software for improved reliability and flexibility. Finally, QC metrics implemented in QuaMeter are rigorously defined and tested. The source code and binary versions of QuaMeter are available under Apache 2.0 License at http://fenchurch.mc.vanderbilt.edu.
Project description:A new UPLC-based untargeted lipidomic approach using a qTOF hybrid mass spectrometer is introduced. The applied binary gradient enables separations of lipid species including constitutional isomeric compounds and low abundant lipid classes such as phosphatidic acid (PA). Addition of phosphoric acid to the solvents improves peak shapes for acidic phospholipids. MS(E) scans allow simultaneous acquisition of full scan data and collision induced fragmentation to improve identification of lipid classes and to obtain structural information. The method was used to investigate the lipidome of yeast.
Project description:Carbapenem-resistant Enterobacterales (CREs) have been recognized as an important threat to global health. CRE cause the majority of the difficult-to-treat infections in health-care settings and are associated with high mortality. Klebsiella pneumoniae carbapenemase (KPC)-producing CREs, in particular Klebsiella pneumoniae, are globally disseminated and responsible for a large number of outbreaks. Development of rapid methods for KPC detection can provide great clinical and epidemiological benefits to prevent KPC dissemination. The aim of this study was to standardize and validate a LC-MS/MS method to detect KPC. This method was also tested against a broad variety of species, including CRE with other carbapenemase genes and the recently reported mcr-1. For validation, 111 isolates with reduced susceptibility to carbapenems were selected (49 KPC-positive and 62 KPC-negative). The presence of four tryptic peptides related to the KPC enzyme was evaluated, and the identification of at least two of them classified the isolate as "KPC-positive." The LTLGSALAAPQR and LALEGLGVNGQ peptides were both detected in 47 of 49 isolates with the blaKPC gene. The other two peptides, GFLAAAVLAR and APIVLAVYTR, were detected in 46 and 19 isolates with the blaKPC gene, respectively. The method correctly classified 47 of 49 KPC-positive and all KPC-negative isolates yielding 96.07% of sensitivity and 100% of specificity. In conclusion, our results demonstrate that the KPC peptide markers were robustly detected by the method which presented high sensitivity and full specificity and therefore can be used as a reliable method to identify this resistance mechanism.
Project description:Acylcarnitines are fatty acyl esters of L-carnitine and facilitate the entry of long-chain fatty acids into mitochondria via the carnitine shuttle, where they are metabolized via ß-oxidation. Alterations of acylcarnitine species can be diagnostic for fatty acid oxidation disorders and organic aciduria and are thus frequently used to screen newborns. Only a subfraction of all known acylcarnitines is thereby monitored and quantified. Therefore, a method for the simultaneous fast and robust detection of all known acylcarnitines was developed using a single concise liquid chromatography mass spectrometry (LC-MS) approach. Derivatization by 3-nitrophenylhydrazine increased the signal intensity of the acylcarnitines and a linear elution from a reversed phase column was observed that was dependent on the length of the carbon chain. This allowed a precise prediction of the exact elution time for each acylcarnitine class, which depended solely on the chemical nature of the carbon chain. This method can be further used to screen for yet unknown acylcarnitine species and adds a layer of confidence for their correct identification. Altogether 123 acylcarnitines species were used to establish a targeted low-resolution LC-MS method. The method was applied to acylcarnitine profiling in several mouse tissues and fluids, in order to identify large differences in the quantity and composition of acylcarnitines.
Project description:Selecting a suitable nano-liquid chromatography system (LC), ionization source and mass spectrometer for LC-tandem mass spectrometry (MS-MS) studies is complicated by numerous competing technologies. This study compares four popular nano-LC systems, four ionization sources and three MS facilities that use completely different LC-MS-MS systems. Statistically significant differences in LC performance were identified with similarly performing Proxeon, Waters and Eksigent nanoLC-Ultra systems [retention time routinely at 0.7-0.9% relative standard deviation (RSD)], and all outperformed the Eksigent nanoLC-2D (RSD ?2%). In addition, compatibility issues were identified between the Bruker HCT ion trap mass spectrometer and both the Eksigent nanoLC-2D and the Bruker nanoelectrospray source. The electrospray source itself had an unexpected and striking effect on chromatographic reproducibility on the Bruker HCT ion trap. The New Objective nanospray source significantly outperformed the Bruker nanospray source in retention time RSD (1% RSD versus 14% RSD, respectively); and the Bruker nebulized nanospray source outperformed both of these traditional, non-nebulized sources (0.5% RSD in retention time). Finally, to provide useful benchmarks for overall proteomics sensitivity, different LC-MS-MS platforms were compared by analyzing a range of concentrations of tryptic digests of bovine serum albumin at three MS facilities. The results indicate that similar sensitivity can be realized with a Bruker HCT-Ultra ion trap, a Thermo LTQ-Velos Linear ion trap and a Thermo LTQ-Orbitrap XL-ETD.