Project description:The profiling was conducted with the 385K Microarray manufactured at NimbleGen, Inc (http://www.nimblegen.com/) designed from 30,386 genes of Arabidopsis (TAIR v.6). RNA samples of leaves of S1 (100% green leaf from 40 days plant) and S3 (more than 50% yellow leaf) senescence stages from senescence-inducible LEC2 transgenic plant, OIL21 were subjected for analysis of Arabidopsis 385K transcriptome. Expression of 3,025 genes were significantly changed with log2 ratios greater than 1.0 or less than -1.0 in S1 or S3 stage (p value <0.05), among which 1491 were up-regulated and 1534 were down regulated. Gene annotation revealed that 7.4% genes, 223 out of 3,025 changed by LEC2 were encoded transcription factors (TF). 106 TFs were up-regulated and 115 TFs were down-regulated. A total of 9 chips were used for microarray. Total RNAs were extracted from senescence leaves at S1 and S3 stages of wild-type and senescence-inducible LEC2 transgenic Arabidopsis. Experiments were triplicated.
Project description:Cytokinins are plant hormones with biological functions ranging from coordination of plant growth and development to the regulation of senescence. A series of 2-chloro-N6-(halogenobenzylamino)purine ribosides was prepared and tested for cytokinin activity in selected bioassays. Several compounds showed significant activity, especially in delaying senescence in detached wheat leaves. We used microarrays to gather information about the reprogramming of gene transcription when senescent Arabidopsis leaves were treated with selected C2-substituted aromatic cytokinin ribosides that showed high activity in the senescence bioassay.
Project description:Cytokinins are plant hormones with biological functions ranging from coordination of plant growth and development to the regulation of senescence. A series of 2-chloro-N6-(halogenobenzylamino)purine ribosides was prepared and tested for cytokinin activity in selected bioassays. Several compounds showed significant activity, especially in delaying senescence in detached wheat leaves. We used microarrays to gather information about the reprogramming of gene transcription when senescent Arabidopsis leaves were treated with selected C2-substituted aromatic cytokinin ribosides that showed high activity in the senescence bioassay. Arabidopsis senescent leaves were treated with cytokinins and subsequently used for RNA extraction and hybridization on Affymetrix microarrays. 21-days old Arabidopsis leaves were treated with the appropriate cytokinin or left untreated (DMSO only).
Project description:The goal of this project is to compare the primary metabolite profile in different tissue types of the model plant Arabidopsis thaliana. Specifically, plants were grown hydroponically under the long-day (16hr light/day) condition at 21C. Tissue samples, including leaves, inflorescences, and roots were harvest 4 1/2 weeks post sowing. Untargeted primary metabolites profiling was carried out using GCTOF.
Project description:Transcriptional profiling of Arabidopsis leaves comparing mock-treated leaves with Botrytis cinerea infected leaves over a time-course (12 and 24 hrs).
Project description:The profiling was conducted with the 385K Microarray manufactured at NimbleGen, Inc (http://www.nimblegen.com/) designed from 30,386 genes of Arabidopsis (TAIR v.6). RNA samples of leaves of S1 (100% green leaf from 40 days plant) and S3 (more than 50% yellow leaf) senescence stages from senescence-inducible LEC2 transgenic plant, OIL21 were subjected for analysis of Arabidopsis 385K transcriptome. Expression of 3,025 genes were significantly changed with log2 ratios greater than 1.0 or less than -1.0 in S1 or S3 stage (p value <0.05), among which 1491 were up-regulated and 1534 were down regulated. Gene annotation revealed that 7.4% genes, 223 out of 3,025 changed by LEC2 were encoded transcription factors (TF). 106 TFs were up-regulated and 115 TFs were down-regulated.
Project description:The aim of this study was to analyze the impact of autotetraploidy on gene expression in Arabidopsis thaliana by comparing diploid versus tetraploid transcriptomes. In particular, this included the comparison of the transcriptome of different tetraploid A. thaliana ecotypes (Col-0 vs. Ler-0). The study was extended to address further aspects. One was the comparison of the transcriptomes in subsequent generations. This intended to obtain information on the genome wide stability of autotetraploid gene expression. Another line of work compared the transcriptomes of different diploid vs. tetraploid tissues. This aimed to investigate whether particular gene groups are specifically affected during the development of A. thaliana autotetraploids. Samples 1-8: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 9-12: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 13-24: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Col-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 25-32: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of diploid vs. tetraploid Ler-0 leaves (6th - 8th). The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 33-36: Arabidopsis thaliana Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Ler-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Ler-0 lines. Samples 37-40: Arabidopsis thaliana Col-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid vs. tetraploid Col-0 seedlings from the second (F2) and third (F3) generation after induction, respectively. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 lines. Samples 41-44: Arabidopsis thaliana Col-0/Ler-0 diploid transcriptome. Transcriptional profiling and comparison of diploid Col-0 vs. diploid Ler-0 seedlings. The experiment was carried out with pedigree of esrablished lines. Samples 45-48: Arabidopsis thaliana Col-0/Ler-0 tetraploid transcriptome. Transcriptional profiling and comparison of tetraploid Col-0 vs tetraploid Ler-0 seedlings. The experiment was carried out with pedigree of independently generated and assessed tetraploid Col-0 and Ler-0 lines.
Project description:Plants grow continuously and undergo numerous changes in their vegetative morphology and physiology during their life span. The molecular basis of these changes is largely unknown. To provide a more comprehensive picture of shoot development in Arabidopsis, microarray analysis was used to profile the mRNA content of shoot apices of different ages, as well as leaf primordia and fully-expanded leaves from 6 different positions on the shoot, in early-flowering and late-flowering genotypes. This extensive dataset provides a new and unexpectedly complex picture of shoot development in Arabidopsis. At any given time, the pattern of gene expression is different in every leaf on the shoot, and reflects the activity at least 6 developmental programs. Three of these are specific to individual leaves (leaf maturation, leaf aging, leaf senescence), two occur at the level of the shoot apex (vegetative phase change, floral induction), and one involves the entire shoot (shoot aging). Our results demonstrate that vegetative development is a much more dynamic process that previously imagined, and provide new insights into the underlying mechanism of this process.