Project description:ArlRS is a two-component regulatory system in Staphylococcus aureus. Here we use RNA-sequencing to compare gene expression in a wild-type USA300 strain and an isogenic arlRS mutant.
Project description:MgrA is a global regulator of gene expression in Staphylococcus aureus. Here we use RNA-sequencing to compare gene expression in a wild-type USA300 strain and an isogenic mgrA mutant.
Project description:To study the roles of NWMN_0641, we used microarray to compare the transcriptome of the NWMN_0641 deletion strain with that of the wild-type Staphylococcus aureus Newman strain. Transcriptome of the NWMN_0641 deletion mutant strain and the wild-type Newman strain
Project description:Young adult fer-15;fem-1 Caenorhabditis elegans were infected with Staphylococcus aureus for 8 h to determine the transcriptional host response to Staphylococcus aureus. Analysis of differential gene expression in C. elegans young adults exposed to two different bacteria: E. coli strain OP50 (control), wild-type Staphylococcus aureus RN6390. Samples were analyzed at 8 hours after exposure to the different bacteria. These studies identified C. elegans genes induced by pathogen infection. Keywords: response to pathogen infection, innate immunity, host-pathogen interactions
Project description:Staphylococcus aureus (S. aureus) is a known pathogen able to infect humans and animals. Human S. aureus isolates are often associated with carriage of Sa3int prophages combined with loss of beta-hemolysin production due to gene disruption, whereas animal isolates are positive for beta-hemolysin associated with absence of Sa3int prophages. Sa3int prophages are known to contribute to staphylococcal fitness and virulence in human host by providing human-specific virulence factors encoded on the prophage genome. Strain-specific differences in regard to phage transfer, lysogenization and induction are attributable to yet unknown staphylococcal factors specifically influencing prophage gene expression. In this work we used tagRNA-sequencing approach to specifically search for these unknown host factors and differences in prophage gene expression. For this purpose, we established a workflow revealing the first direct comparison for differential gene expression analysis on two distinct single-lysogenic S. aureus isolates. Further, global gene expression patterns were investigated in two S. aureus isolates upon mitomycin C treatment and compared to uninduced conditions. This provides new insights into the tightly linked host-phage interaction network.
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) infections result in more than 200,000 hospitalizations and 10,000 deaths in the United States each year and remain an important medical challenge. To better understand the transcriptome of Staphylococcus aureus USA300 NRS384, a community-acquired MRSA strain, we have conducted an RNA-Seq experiment on WT samples.
Project description:Vancomycin-intermediate Staphylococcus aureus (VISA) evolve in a strain-specific manner and acquire mutations that lead to alterations in cell wall metabolism that reduce susceptibility to vancomycin. We had earlier isolated several VISA mutant strains of the clinical hVISA strain MM66. This study is aimed at analyzing the metabolome of these mutants in comparison to the parent strain.
Project description:Accurate annotation of regulatory RNAs is a complex task but nevertheless essential as sRNA molecular and functional studies ensue from it. Several formerly considered small RNAs (sRNA) are now known to be parts of UTR transcripts. In light of experimental data, we review hundreds of Staphylococcus aureus putative regulatory RNAs. We pinpoint those that are likely acting in trans and are not expressed from the opposite strand of a coding gene. We conclude that HG003, a NCTC8325 derivative strain, has about 50 bona fide sRNAs, indicating that these RNAs are less numerous than commonly stated.
Project description:Staphylococcus aureus is a gram-positive cocci and an important human commensal bacteria and pathogen. S. aureus infections are increasingly difficult to treat because of the emergence of highly resistant MRSA (Methicillin-resistant S. aureus) strains. Here we present a method to study differential gene expression in S. aureus using high-throughput RNA-sequencing (RNA-seq). We use RNA-seq to examine the differential gene expression in S. aureus RN4220 cells containing an exogenously expressed transcription factor and between two S. aureus strains (RN4220 and NCTC8325-4). The information provided by RNA-seq was a significant advance over previously described microarray based techniques. We investigated the sequence and gene expression differences between RN4220 and NCTC8325-4 and used the RNA-seq data to identify S. aureus promoters suitable for in vitro analysis. We used RNA-seq to describe, on a genome wide scale, genes positively and negatively regulated by a phage encoded transcription factor, gp67. RNA-seq offers the ability to study differential gene expression with single-nucleotide resolution, and is a considerable improvement over the predominant genome-wide transcriptome technologies used in S. aureus. RNA-seq analysis of Staphylococcus aureus RN4220 (electrocompetent strain) carrying either empty pRMC2 (inducible expression vector) or pRMC2 carrying the ORF67 gene (encodes gp67). Both strains were grown to OD 0.2 and transgene expression was induced with 100ng/ml anhydrotetracycline. As a control, Staphylococcus aureus strain NCTC8325-4 (non-electrocompetent strain) was grown under identical conditions except without the addition of anhydrotetracycline.
Project description:MepR is a substrate-responsive repressor of mepR and mepA, which encode itself and a MATE family multidrug efflux pump. Microarray analyses of Staphylococcus aureus SH1000 and its mepR-disrupted derivative revealed changes in expression of many genes in addition to mepR and mepA, notably several involved in virulence Keywords: Staphylococcus aureus, MATE efflux pump, MepR