Project description:Ammonia oxidizer community structure were examined in a depth profile from 20 to 2000 m at the Bermuda Atlantic Time-series Study using a functional gene microarray to look at amoA diversity
Project description:This project presents field metaproteomics data from Trichodesmium colonies collected from the surface ocean. Most were collected from the tropical and subtropical Atlantic ocean, but there is also data from the long term Bermuda Atlantic Time Series and Hawaii Ocean Time Series. Trichodesmium is a globally important marine microbe and its growth and nitrogen fixation activity is limited by nutrient availability in the surface ocean. This dataset was generated to answer questions about limitations on Trichodesmium's growth and activity in the nature.
Project description:This project characterizes the metabolic consequences of the daily physiological rhythms and diel vertical migration for the model subtropical copepod, Pleuromamma xiphias. P. xiphias were collected near the Bermuda Atlantic Time Series in plankton tows at different times of day, representing different parts of their daily vertical migration. Single copepods were isolated from the tows and flash-frozen for proteomics analysis.
Project description:<p>Untargeted features from the Bermuda Atlantic Time-series Study (BATS) site collected during the time period spanning 2016 to 2019. Metabolites were sampled from surface seawater to 1000 m deep and throughout the year. Dissolved organic matter extracts were analyzed in positive and negative ion mode with an ultra-high performance liquid chromatography system (Vanquish UHPLC, Thermo Scientific) coupled with an Orbitrap Fusion Lumos Tribid mass spectrometer.</p>
Project description:Ammonia oxidizer community structure were examined in a depth profile from 20 to 2000 m at the Bermuda Atlantic Time-series Study using a functional gene microarray to look at amoA diversity Two color array (cy3 and cy5): the universal standard 20 bp oligo (fluoresced with cy5) is printed to the slide with a 70-mer. Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer will bind to it. Signal is the cy3/cy5. Two replicate arrays were run on duplicate targets.