Project description:To systematically study the chemical constituents in Magnolia officinalis var. biloba fruits, nine phenylethanoid glycosides were isolated by solvent extraction, silica gel, and preparative high-performance liquid chromatography (HPLC). Their structures were elucidated by 1D and 2D NMR analyses, including COSY, HMQC and HMBC correlations, and HPLC analysis of sugar residue. Nine phenylethanoid glycosides, namely, magnoloside Ia (1), magnoloside Ic (2), crassifolioside (3), magnoloside Ib (4), magnoloside IIIa (5), magnoloside IVa (6), magnoloside IIa (7), magnoloside IIb (8) and magnoloside Va (9), were first isolated from the n-butanol fraction of Magnolia officinalis var. biloba fruits alcohol extract. Free radical scavenging activities of the nine phenylethanoid glycosides were assessed using the DPPH, ABTS, and superoxide anion radical scavenging assays. Simultaneously, protective effects of all compounds against free radical-induced oxidative damage were evaluated by two different kinds of mitochondrial damage model. The protective effects were assessed by mitochondrial swelling, the formations of malondialdehyde (MDA) and lipid hydroperoxide (LOOH), the activities of catalase (CAT), glutathione reductase (GR) and superoxide dismutase (SOD). All phenylethanoid glycosides showed significant protective effects.
Project description:Premise:A new set of primers was developed for sequencing of whole chloroplast genomes of Magnolia species and gap-filling of unfinished genomes. Methods and Results:Two hundred and fifty primers were newly designed based on two previously reported chloroplast genomes from two different genera in Magnoliaceae. A total of 134 primer pairs, including the ones developed in this study and 18 previously reported ones, were enough to cover the entire chloroplast genome sequences in Magnoliaceae. Four species from different sections of Magnolia (M. dealbata, M. fraseri var. pyramidata, M. liliiflora, and M. odora) were used to show the general application of these primers to chloroplast genome sequencing in Magnolia. Conclusions:Using the developed primers, four Magnolia chloroplast genomes were successfully assembled. These results show the utility of these primers across Magnolia and their potential use for phylogenetic studies, DNA barcoding, and population genetics in this group.
Project description:Mood disorders represent one of the most prevalent and costly psychiatric diseases worldwide. The current therapies are generally characterized by several well-known side effects which limit their prolonged use. The use of herbal medicine for the management of several psychiatric conditions is becoming more established, as it is considered a safer support to conventional pharmacotherapy. The aim of this study was to investigate the possible anxiolytic and antidepressant activity of a fixed combination of L-theanine, Magnolia officinalis, and Melissa officinalis (TMM) in an attempt to evaluate how the multiple modulations of different physiological systems may contribute to reducing mood disorders. TMM showed an anxiolytic-like and antidepressant-like activity in vivo, which was related to a neuroprotective effect in an in vitro model of excitotoxicity. The effect of TMM was not altered by the presence of flumazenil, thus suggesting a non-benzodiazepine-like mechanism of action. On the contrary, a significant reduction in the effect was observed in animals and neuronal cells co-treated with AM251, a cannabinoid receptor type 1 (CB1) antagonist, suggesting that the endocannabinoid system may be involved in the TMM mechanism of action. In conclusion, TMM may represent a useful and safe candidate for the management of mood disorders with an innovative mechanism of action, particularly as an adjuvant to conventional therapies.
Project description:Protein tyrosine phosphatase 1B (PTP1B) is an established therapeutic target for type 2 diabetes mellitus (T2DM) and obesity. The aim of this study was to investigate the inhibitory activity of Magnolia officinalis extract (ME) on PTP1B and its anti-T2DM effects. Inhibition assays and inhibition kinetics of ME were performed in vitro. 3T3-L1 adipocytes and C2C12 myotubes were stimulated with ME to explore its bioavailability in cell level. The in vivo studies were performed on db/db mice to probe its anti-T2DM effects. In the present study, ME inhibited PTP1B in a reversible competitive manner and displayed good selectivity against PTPs in vitro. Furthermore, ME enhanced tyrosine phosphorylation levels of cellular proteins, especially the insulin-induced tyrosine phosphorylations of insulin receptor ?-subunit (IR?) and ERK1/2 in a dose-dependent manner in stimulated 3T3-L1 adipocytes and C2C12 myotubes. Meanwhile, ME enhanced insulin-stimulated GLUT4 translocation. More importantly, there was a significant decrease in fasting plasma glucose level of db/db diabetic mice treated orally with 0.5?g/kg ME for 4 weeks. These findings indicated that improvement of insulin sensitivity and hypoglycemic effects of ME may be attributed to the inhibition of PTP1B. Thereby, we pioneered the inhibitory potential of ME targeted on PTP1B as anti-T2DM drug discovery.
Project description:The first complete chloroplast genome (cpDNA) sequence of <i>Magnolia maudiae</i> was determined from Illumina HiSeq pair-end sequencing data in this study. The cpDNA is 160,205?bp in length, contains a large single-copy region (LSC) of 88,249?bp and a small single-copy region (SSC) of 18,806?bp, which were separated by a pair of inverted repeats (IR) regions of 26,575?bp. The genome contains 132 genes, including 87 protein-coding genes, 8 ribosomal RNA genes, and 37 transfer RNA genes. Further phylogenomic analysis showed that <i>M. maudiae</i> was close to <i>Magnolia odora</i> and <i>Magnolia laevifolia</i> in <i>Magnolia</i> genus.
Project description:Two honokiol dimers, houpulins A and B (1 and 2), and two magnolol derivatives, houpulins C and D (3 and 4), were isolated and characterized from an ethanol extract obtained from the roots of Magnolia officinalis. The chemical structures were determined based on spectroscopic and physicochemical analyses, which included 1D and 2D NMR, as well as mass spectrometry data. These four oligomers possess new carbon skeletons postulated to be biosynthesized from the coupling of three or four C6-C3 subunits. In addition, the new oligomers were evaluated for inhibition of superoxide anion generation and elastase release, and houpulin B (2) was identified as a new anti-inflammatory lead compound.