Project description:Mosquitoes transmit Plasmodium and certain arboviruses during blood feeding, when they are injected along with saliva. Mosquito saliva interferes with the host's hemostasis and inflammation response and influences the transmission success of some pathogens. One family of mosquito salivary gland proteins, named SGS, is composed of large bacterial-type proteins that in Aedes aegypti were implicated as receptors for Plasmodium on the basal salivary gland surface. Here, we characterize the biology of two SGSs in the malaria mosquito, Anopheles gambiae, and demonstrate their involvement in blood feeding. Western blots and RT-PCR showed that Sgs4 and Sgs5 are produced exclusively in female salivary glands, that expression increases with age and after blood feeding, and that protein levels fluctuate in a circadian manner. Immunohistochemistry showed that SGSs are present in the acinar cells of the distal lateral lobes and in the salivary ducts of the proximal lobes. SDS-PAGE, Western blots, bite blots, and immunization via mosquito bites showed that SGSs are highly immunogenic and form major components of mosquito saliva. Last, Western and bioinformatic analyses suggest that SGSs are secreted via a non-classical pathway that involves cleavage into a 300-kDa soluble fragment and a smaller membrane-bound fragment. Combined, these data strongly suggest that SGSs play an important role in blood feeding. Together with their role in malaria transmission, we propose that SGSs could be used as markers of human exposure to mosquito bites and in the development of disease control strategies.
Project description:Hepatitis C virus (HCV) infection is the most common blood-borne chronic infection in the United States. Chronic lymphocytic sialadenitis and sicca syndrome have been reported in chronic HCV infection. Up to 55% of these patients may have xerostomia; the mechanisms of the xerostomia and salivary gland (SG) hypofunction remain controversial. The objectives of this project are to establish if xerostomia associates with SG and HCV infection and to characterize the structural changes in SG and saliva composition. Eighteen HCV-infected patients with xerostomia were evaluated for SG dysfunction; 6 of these patients (patients 1-6) were further evaluated for SG histopathological changes and changes in saliva composition. The techniques used include clinical and laboratory assessment, SG ultrasonography, histological evaluation, sialochemical and proteomics analysis, and RNA in situ hybridization. All the HCV patients had low saliva flow, chronic sialadenitis, and SG fibrosis and lacked Sjögren syndrome (SS) characteristic autoantibodies. Further evaluation of a subgroup of 6 HCV patients (patients 1-6) demonstrated diffuse lymphocytic infiltrates that are predominantly CD8+ T cells with a significant increase in the number of inflammatory cells. Alcian Blue/periodic acid-Schiff staining showed significant changes in the ratio and intensity of the acinar secretory units of the HCV patients' minor SG. The submandibular glands showed significant ultrasonographic abnormalities in the parenchyma relative to the parotid glands. Significant changes were also observed in the concentration of sodium and mucin 5b. Although no significant correlation was observed between the lymphocytic infiltrates and the years of HCV chronic infection, a positive correlation was observed between HCV RNA-positive epithelial cells and the years of HCV infection. Consistent with the low saliva flow and xerostomia, patients showed changes in several markers of SG acinar and ductal function. Changes in the composition of the saliva suggest that HCV infection can cause xerostomia by mechanisms distinct from SS.
Project description:Although the physiological control of salivary secretion has been well studied, the impact of disease on salivary gland function and how this changes the composition and function of saliva is less well understood and is considered in this review. Secretion of saliva is dependent upon nerve-mediated stimuli, which activate glandular fluid and protein secretory mechanisms. The volume of saliva secreted by salivary glands depends upon the frequency and intensity of nerve-mediated stimuli, which increase dramatically with food intake and are subject to facilitatory or inhibitory influences within the central nervous system. Longer-term changes in saliva secretion have been found to occur in response to dietary change and aging, and these physiological influences can alter the composition and function of saliva in the mouth. Salivary gland dysfunction is associated with different diseases, including Sjögren syndrome, sialadenitis, and iatrogenic disease, due to radiotherapy and medications and is usually reported as a loss of secretory volume, which can range in severity. Defining salivary gland dysfunction by measuring salivary flow rates can be difficult since these vary widely in the healthy population. However, saliva can be sampled noninvasively and repeatedly, which facilitates longitudinal studies of subjects, providing a clearer picture of altered function. The application of omics technologies has revealed changes in saliva composition in many systemic diseases, offering disease biomarkers, but these compositional changes may not be related to salivary gland dysfunction. In Sjögren syndrome, there appears to be a change in the rheology of saliva due to altered mucin glycosylation. Analysis of glandular saliva in diseases or therapeutic interventions causing salivary gland inflammation frequently shows increased electrolyte concentrations and increased presence of innate immune proteins, most notably lactoferrin. Altering nerve-mediated signaling of salivary gland secretion contributes to medication-induced dysfunction and may also contribute to altered saliva composition in neurodegenerative disease.
Project description:This article describes a suite of global climate model output files that provide continental climatic conditions (monthly temperatures, precipitation, evaporation, precipitation minus evaporation balance, runoff) together with the calculated Köppen-Geiger climate classes and topography, for 28 evenly spaced time slices through the Phanerozoic (Cambrian to Quaternary, 540 Ma to 0 Ma). Climatic variables were simulated with the Fast Ocean Atmosphere Model (FOAM), using a recent set of open-access continental reconstructions with paleotopography and recent atmospheric CO2 and solar luminosity estimates. FOAM is a general circulation model frequently used in paleoclimate studies, especially in the Palaeozoic. Köppen-Geiger climate classes were calculated based on simulated temperature and precipitation fields using Wong Hearing et al.'s [1] implementation of Peel et al.'s [2] updated classification. This dataset provides a unique window onto changing continental climate throughout the Phanerozoic that accounts for the simultaneous evolution of paleogeography (continental configuration and topography), atmospheric composition and greenhouse gas forcing, and solar luminosity.
Project description:Plasmodium sporozoites, the stage that initiates a malaria infection, must invade the mosquito salivary glands (SGs) before transmitting to a vertebrate host. However, the effects of sporozoite invasion on salivary gland physiology and saliva composition remain largely unexplored. We examined the impact of Plasmodium infection on Anopheles gambiae salivary glands using high-resolution proteomics, gene expression, and morphological analysis. The data revealed differential expression of various proteins, including the enrichment of humoral proteins in infected salivary glands originating from the hemolymph. These proteins diffused into the SGs due to structural damage caused by the sporozoites during invasion. Conversely, saliva proteins diffused out into the circulation of infected mosquitoes. Moreover, infection altered saliva protein composition, as shown by proteomes from saliva collected from mosquitoes infected by P. berghei or P. falciparum, revealing a significant reduction of immune proteins compared to uninfected mosquitoes. This reduction is likely due to the association of these proteins with the surface of sporozoites within the mosquito salivary secretory cavities. The saliva protein profiles from mosquitoes infected with both Plasmodium species were remarkably similar, suggesting a conserved interaction between sporozoites and salivary glands. Our results provide a foundation for understanding the molecular interactions between Plasmodium sporozoites and mosquito salivary glands.
Project description:Plasmodium sporozoites, the stage that initiates a malaria infection, must invade the mosquito salivary glands before transmitting to a vertebrate host. However, the effects of sporozoite invasion on salivary gland physiology and saliva composition remain largely unexplored. We examined the impact of Plasmodium infection on Anopheles gambiae salivary glands using high-resolution proteomics, gene expression, and morphological analysis. The data revealed differential expression of various proteins, including the enrichment of humoral proteins in infected salivary glands originating from the hemolymph. These proteins diffused into the SGs due to structural damage caused by the sporozoites during invasion. Conversely, saliva proteins diffused out into the circulation of infected mosquitoes. Moreover, infection altered saliva protein composition, as shown by proteomes from saliva collected from mosquitoes infected by P. berghei or P. falciparum, revealing a significant reduction of immune proteins compared to uninfected mosquitoes. This reduction is likely due to the association of these proteins with the surface of sporozoites within the mosquito salivary secretory cavities. The saliva protein profiles from mosquitoes infected with both Plasmodium species were remarkably similar, suggesting a conserved interaction between sporozoites and salivary glands. Our results provide a foundation for understanding the molecular interactions between Plasmodium sporozoites and mosquito salivary glands.
Project description:Plasmodium sporozoites, the stage that initiates a malaria infection, must invade the mosquito salivary glands before transmitting to a vertebrate host. However, the effects of sporozoite invasion on salivary gland physiology and saliva composition remain largely unexplored. We examined the impact of Plasmodium infection on Anopheles gambiae salivary glands using high-resolution proteomics, gene expression, and morphological analysis. The data revealed differential expression of various proteins, including the enrichment of humoral proteins in infected salivary glands originating from the hemolymph. These proteins diffused into the SGs due to structural damage caused by the sporozoites during invasion. Conversely, saliva proteins diffused out into the circulation of infected mosquitoes. Moreover, infection altered saliva protein composition, as shown by proteomes from saliva collected from mosquitoes infected by P. berghei or P. falciparum, revealing a significant reduction of immune proteins compared to uninfected mosquitoes. This reduction is likely due to the association of these proteins with the surface of sporozoites within the mosquito salivary secretory cavities. The saliva protein profiles from mosquitoes infected with both Plasmodium species were remarkably similar, suggesting a conserved interaction between sporozoites and salivary glands. Our results provide a foundation for understanding the molecular interactions between Plasmodium sporozoites and mosquito salivary glands.
Project description:Reverse transcription loop-mediated isothermal amplification (RT-LAMP) is a fast and convenient method to amplify and identify the transcripts of a targeted pathogen. We combined bioinformatic and experimental analyses to improve the RT-LAMP assay performance for COVID-19 diagnosis. First, we developed an improved algorithm to design LAMP primers targeting the nucleocapsid (N), membrane (M), and spike (S) genes of SARS-CoV-2. Next, we rigorously validated these new assays for their efficacy and specificity. Further, we demonstrated that multiplexed RT-LAMP assays could directly detect as low as a few copies of SARS-CoV-2 RNA in saliva, without the need of RNA isolation. Importantly, further testing using saliva samples from COVID-19 patients indicated that the new RT-LAMP assays were in total agreement in sensitivity and specificity with standard RT-qPCR. In summary, our new LAMP primer design algorithm along with the validated assays provide a fast and reliable method for the diagnosis of COVID-19 cases.