Proteomics

Dataset Information

0

Quantitative proximity proteomics suggests a phytotransferrin-mediated cell surface-to-chloroplast iron trafficking axis in marine diatoms


ABSTRACT: Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is internalized via endocytosis, however proteins downstream of this environmentally ubiquitous iron receptor are unknown. We applied engineered ascorbate peroxidase APEX2-based subcellular proteomics to catalog proximal proteins of phytotransferrin in the model diatom Phaeodactylum tricornutum. Proteins encoded by poorly characterized iron-sensitive genes were identified including three that are expressed from a chromosomal gene cluster. Two of them showed unambiguous colocalization with phytotransferrin adjacent to the chloroplast. Further phylogenetic, domain, and biochemical analyses suggest their involvement in intracellular iron processing. Proximity proteomics holds enormous potential to glean new insights into iron acquisition pathways and beyond in these evolutionarily, ecologically, and biotechnologically important microalgae.

INSTRUMENT(S): Orbitrap Fusion Lumos

ORGANISM(S): Phaeodactylum Tricornutum (strain Ccap 1055/1)

TISSUE(S): Photosynthetic Cell

SUBMITTER: Jernej Turnsek  

LAB HEAD: Andrew Ellis Allen

PROVIDER: PXD018022 | Pride | 2021-03-02

REPOSITORIES: Pride

altmetric image

Publications

Proximity proteomics in a marine diatom reveals a putative cell surface-to-chloroplast iron trafficking pathway.

Turnšek Jernej J   Brunson John K JK   Viedma Maria Del Pilar Martinez MDPM   Deerinck Thomas J TJ   Horák Aleš A   Oborník Miroslav M   Bielinski Vincent A VA   Allen Andrew Ellis AE  

eLife 20210216


Iron is a biochemically critical metal cofactor in enzymes involved in photosynthesis, cellular respiration, nitrate assimilation, nitrogen fixation, and reactive oxygen species defense. Marine microeukaryotes have evolved a phytotransferrin-based iron uptake system to cope with iron scarcity, a major factor limiting primary productivity in the global ocean. Diatom phytotransferrin is endocytosed; however, proteins downstream of this environmentally ubiquitous iron receptor are unknown. We appli  ...[more]

Similar Datasets

2015-05-05 | E-GEOD-68513 | biostudies-arrayexpress
2018-06-17 | E-MTAB-6503 | biostudies-arrayexpress
2015-01-12 | E-GEOD-58808 | biostudies-arrayexpress
2022-06-24 | E-MTAB-10848 | biostudies-arrayexpress
2023-12-30 | E-MTAB-10618 | biostudies-arrayexpress
2019-11-27 | E-MTAB-7635 | biostudies-arrayexpress
2022-06-15 | E-MTAB-11264 | biostudies-arrayexpress
2014-07-01 | E-GEOD-58648 | biostudies-arrayexpress
2021-04-10 | E-MTAB-10296 | biostudies-arrayexpress
2020-03-10 | E-MTAB-8535 | biostudies-arrayexpress