Proteomics

Dataset Information

0

Single-cell transcriptomics and cell-specific proteomics reveals new molecular regulators of sleep


ABSTRACT: Every day, we sleep for a third of the day. Sleep is important for cognition, brain waste clearance, metabolism, and immune responses. Homeostatic regulation of sleep is maintained by progressively rising sleep need during wakefulness, which then dissipates during sleep. The molecular mechanisms governing sleep are largely unknown. Here, we used a combination of single-cell RNA sequencing and cell-type specific proteomics to interrogate the molecular and functional underpinnings of sleep. Different cell-types in the brain regions show similar transcriptional response to sleep need whereas sleep deprivation changes overall expression indicative of altered antigen processing, synaptic transmission and cellular metabolism in brainstem, cortex and hypothalamus, respectively. Increased sleep need enhances expression of transcription factor Sox2, Mafb, and Zic1 in brainstem; Hlf, Cebpb and Sox9 in cortex, and Atf3, Fosb and Mef2c in hypothalamus. Results from cell-type proteome analysis suggest that sleep deprivation changes abundance of proteins in cortical neurons indicative of altered synaptic vesicle cycles and glucose metabolism whereas in astrocytes it alters the abundance of proteins associated with fatty acid degradation. Similarly, phosphoproteomics of each cell type demonstrates large shifts in site-specific protein phosphorylation in neurons and astrocytes of sleep deprived mice. Our results indicate that sleep deprivation regulates transcriptional, translational and post-translational responses in a cell-specific manner and advances our understanding of the cellular and molecular mechanisms that govern sleep-wake homeostasis in mammals.

INSTRUMENT(S): Orbitrap Fusion Lumos

ORGANISM(S): Mus Musculus (mouse)

TISSUE(S): Brain, Astrocyte Of The Cerebral Cortex, Neuron Of Cerebral Cortex

SUBMITTER: Sandipan Ray  

LAB HEAD: Akhilesh B. Reddy

PROVIDER: PXD018334 | Pride | 2022-10-13

REPOSITORIES: Pride

altmetric image

Publications

Single-cell transcriptomics and cell-specific proteomics reveals molecular signatures of sleep.

Jha Pawan K PK   Valekunja Utham K UK   Ray Sandipan S   Nollet Mathieu M   Reddy Akhilesh B AB  

Communications biology 20220819 1


Every day, we sleep for a third of the day. Sleep is important for cognition, brain waste clearance, metabolism, and immune responses. The molecular mechanisms governing sleep are largely unknown. Here, we used a combination of single-cell RNA sequencing and cell-type-specific proteomics to interrogate the molecular underpinnings of sleep. Different cell types in three important brain regions for sleep (brainstem, cortex, and hypothalamus) exhibited diverse transcriptional responses to sleep nee  ...[more]

Similar Datasets

2022-08-24 | GSE137665 | GEO
2011-08-13 | E-TIGR-6 | biostudies-arrayexpress
2018-12-04 | PXD008966 | Pride
2023-07-13 | PXD033401 | Pride
2017-02-13 | PXD004537 | Pride
2021-05-12 | GSE174231 | GEO
2021-03-01 | GSE166831 | GEO
2012-11-17 | E-GEOD-42324 | biostudies-arrayexpress
2012-11-17 | E-GEOD-42323 | biostudies-arrayexpress
2016-12-27 | GSE92913 | GEO