ABSTRACT: Prevotella bryantii B14 was cultivated with monensin. Growth was monitored over a period of 9h with a broad range of monensin concentrations.
Project description:Prevotella bryantii B14 was cultivated with monensin. Growth was monitored over a period of 72h including frequent sampling of cells.
Project description:P. bryantii B14 cells were cultivated separately in acetic (Acet), propionic (Prop), butyric (But), iso-butyric (iBut), valeric (Val), iso-valeric (iVal) and 2-methyl butyric acid (2MB) as well as in a mixture of all mentioned short-chain fatty acids (Mix). All 8 treatments were analyzed regarding their proteomes in order to understand the requirements and effects of each SCFA on the metabolism.
Project description:We performed shotgun proteomics on the bacteria Prevotella brevis GA33 and Prevotella ruminicola 23. We did this for two types of samples (cell extract and cell membrane) and using two methods (data-dependent and data-independent acquisition).
Project description:Prevotella intermedia is a Gram-negative bacterium that is notably linked to periodontitis and acute necrotizing ulcerative gingivitis. P. intermedia is known to utilise the T9SS to secrete and anchor virulence factors to the cell surface, presumably via C-terminal modification of the cargo protein with a cell surface polysaccharide. The identity of the linking sugar and the sites of modification on the cargo have yet to be determined. Here, we first employed Hidden Markov Models to predict cargo proteins in P. intermedia, and then conducted LC-MS/MS analyses of partially deglycosylated fractions to characterise the C-terminal glycosylation. A total of 80 cargo proteins were predicted based on the presence of a T9SS C-terminal domain signal (CTD), and these were divided into 48 short CTDs predicted by AlphaFold to adopt a single 3-stranded β-sheet and 32 long CTDs predicted to form the more typical larger β-sandwich structures. Cleavage sites for five short CTDs and four long CTDs were experimentally determined, and glycosylation was observed at the mature C-terminus of six cargo. Two glycans were identified of delta masses 419.198 and 433.185 Da, corresponding to novel linkages to N-alanyl dHex-HexNAc and N-alanyl (Me-dHex)-HexNAc, respectively, with the alanine amide-linked to the protein C-terminus. This indicated that both short and long CTDs were cleaved and glycosylated. AlphaFold multimer modelling predicted that both kinds of CTDs could bind to the PorV shuttle protein in the same manner, with the conserved CTD motifs interacting with the same sites in PorV.
Project description:The aim of the present work was to investigate the effect of monensin on the in vitro growth of T. gondii tachyzoites and on the host cells (human brain microvascular endothelial cells - hBMECs). The hypotheses were that (1) inhibition of the WNT signalling pathway by monensin can reduce the growth of T. gondii infecting human brain microvascular endothelial cells (hBMECs) and (2) by suppression of the growth of T. gondii using monensin, impairment of the BBB integrity can be restored (3) inhibition of WNT pathway by monensin can be detected by microarray experiment.
Project description:Prevotella species in the human gut microbiome are primarily comprised of Prevotella copri, and its diversity and function were recently investigated in detail. Much less is known about other Prevotella species in the human gut. Here, we examined the composition of Prevotella species in human guts by mapping publicly available gut metagenomes to a dereplicated set of metagenome-assembled genomes (MAGs) representing Prevotella lineages found in human guts. In most human cohorts, P. copri is the most relatively abundant species (e.g. up to 14.3% relative abundance in Tangshan, China). However, more than half of the metagenome reads in several cohorts mapped to Prevotella MAGs representing P. stercorea and several other species sister to P. stercorea and P. copri. Analyses of genes encoded in these genomes indicated that P. stercorea and related lineages lacked many hemicellulose degrading enzymes and were thus less likely to metabolise hemicelluloses compared with P. copri and copri-related lineages. Instead, P. stercorea genomes possess several carbohydrate esterases that may be involved in releasing ester modifications from carbohydrates to facilitate their degradation. These findings reveal unexplored Prevotella diversity in the human gut and indicate possible niche partitions among these related species.
Project description:Blood samples from healthy controls and PAD patients were collected at Xiangya Hospital, China. Two to three milliliters of venous blood were drawn into EDTA-coated tubes and stored at 4°C. Plasma was isolated after centrifugation (2,000 g, 10 min, 4°C), aliquoted, and send to perform MS. Group1: Health control D1, A5, A46, B14,B22; Group2: PAD C6 C29 D45 A32
Project description:The Prevotella genus is a normal constituent of the oral microbiota, and is commonly isolated from mechanically treated polymicrobial infections. However, antibiotic treatment is necessary for some patients. This study compared the antibiotic susceptibility and the presence of resistance genes in clinical oral isolates of P. intermedia, P. nigrescens, and P. melaninogenica. Antibiotic susceptibility was assessed using the agar dilution method. PCR confirmed the species and resistance gene frequency in the Prevotella species. The frequencies of species P. intermedia, P. nigrescens, and P. melaninogenica were 30.2%, 45.7%, and 24.1%, respectively. No isolates of P. intermedia were resistant to amoxicillin/clavulanic acid, tetracycline, or clindamycin. P. nigrescens and P. melaninogenica were resistant to amoxicillin/clavulanic acid and tetracycline at frequencies of 40% and 20%, respectively. P. intermedia was resistant to metronidazole at a frequency of 30%, P. nigrescens at 20%, and P. melaninogenica at 40%. P. nigrescens and P. melaninogenica were resistant to 50% and 10% clindamycin, respectively. The gene most frequently detected was tetQ, at 43.3%, followed by tetM at 36.6%, blaTEM at 26.6%, ermF at 20%, cfxA, cfxA2, and nimAB at 16.6%, and nimAEFI at 3.3%. P. nigrescens was the species with the highest resistance to antibiotics such as amoxicillin/clavulanic acid, amoxicillin, and clindamycin, in addition to being the species with the largest number of genes compared to P. intermedia and P. melaninogenica.