Proteomics

Dataset Information

0

Loss of H3K9 tri-methylation alters chromosome compaction and transcription factor retention during mitosis


ABSTRACT: Recent studies have shown that repressive chromatin machinery, including DNA methyltransferases and Polycomb Repressor Complexes, bind to chromosomes throughout mitosis and their depletion results in increased chromosome size. Here we show that enzymes that catalyse H3K9 methylation, such as Suv39h1, Suv39h2, G9a and Glp, are also retained on mitotic chromosomes. Surprisingly however, mutants lacking H3K9me3 have unusually small and compact mitotic chromosomes associated with increased H3S10ph and H3K27me3 levels. Chromosome size and centromere compaction in these mutants were rescued by providing exogenous Suv39h1, or inhibiting Ezh2 activity. Quantitative proteomic comparisons of native mitotic chromosomes isolated from wildtype versus Suv39h1/Suv39h2 double-null mouse ESCs revealed that H3K9me3 was essential for the efficient retention of bookmarking factors such as Esrrb. These results highlight an unexpected role for repressive heterochromatin domains in preserving transcription factor binding through mitosis, and underscore the importance of H3K9me3 for sustaining chromosome architecture and epigenetic memory during cell division.

INSTRUMENT(S): Q Exactive HF-X

ORGANISM(S): Mus Musculus (mouse)

TISSUE(S): Embryonic Stem Cell

SUBMITTER: Alex Montoya  

LAB HEAD: Dr Pavel Shliaha

PROVIDER: PXD039521 | Pride | 2023-01-25

REPOSITORIES: Pride

Similar Datasets

2022-10-12 | PXD030771 | Pride
2023-01-17 | GSE195767 | GEO
2016-08-05 | E-MTAB-3810 | biostudies-arrayexpress
2020-06-15 | PXD015251 | Pride
2016-09-27 | PXD003877 | Pride
2016-05-31 | PXD003427 | Pride
2014-08-12 | E-GEOD-58555 | biostudies-arrayexpress