Project description:The ubiquitous redox coenzyme nicotinamide adenine dinucleotide (NAD) acts as a non-canonical cap structure on prokaryotic and eukaryotic ribonucleic acids. Here we find that in budding yeast, NAD-RNAs are abundant (>1400 species), short (<170 nt), and mostly correspond to mRNA 5'-ends. The modification percentage is low (<5%). NAD is incorporated during the initiation step by RNA polymerase II, which uses distinct promoters with a YAAG motif for this purpose. Most NAD-RNAs are 3'-truncated. At least three decapping enzymes, Rai1, Dxo1, and Npy1, guard against NAD-RNA at different cellular locations, targeting overlapping transcript populations. NAD-mRNAs do not support translation in vitro. Our work indicates that in budding yeast, most of the NAD incorporation into RNA seems to be accidental and undesirable to the cell, which has evolved a diverse surveillance machinery to prematurely terminate, decap and reject NAD-RNAs.
Project description:A progressive loss of protein homeostasis is characteristic of aging and a driver of neurodegeneration. To investigate this process quantitatively, we characterized proteome dynamics during brain aging in the short-lived vertebrate Nothobranchius furzeri combining transcriptomics and proteomics. We detected a progressive reduction in the correlation between protein and mRNA mainly due to post-transcriptional mechanisms that account for over 40% of the age-regulated proteins. These changes cause a progressive loss of stoichiometry in several protein complexes, including ribosomes, which show impaired assembly and are enriched in protein aggregates in old brains. Mechanistically, we show that reduction of proteasome activity is an early event during brain aging and is sufficient to induce proteomic signatures of aging and loss of stoichiometry in vivo. Using longitudinal transcriptomic data, we show that the magnitude of early life decline in proteasome levels is the major risk factor for mortality. Our work defines causative events in the aging process that can be targeted to prevent loss of protein homeostasis and delay the onset of age-related neurodegeneration.
Project description:Mass spectrometry-based whole proteome analysis of parental and RFX7 knock-out U2OS cells treated with 10 µM Nutlin-3a or DMSO solvent control. Ten biological replicates were used.
Project description:Many proteins undergo glycosylation in the endoplasmic reticulum (ER) and the Golgi apparatus. Altered glycosylation can manifest in serious, sometimes fatal malfunctions. We recently showed that mutations in the cytoplasmic protein GDP-mannose pyrophosphorylase A (GMPPA) cause a syndrome characterized by alacrima, achalasia, mental retardation and myopathic alterations. GMPPA acts as feedback inhibitor of GDP-mannose pyrophosphorylase B (GMPPB), which provides GDP-mannose as a substrate for protein glycosylation. Loss of GMPPA enhances incorporation of mannose into glycochains of various proteins, including α-dystroglycan (α-DG), a protein that links the extracellular matrix with the cytoskeleton. Here, we show that loss of GMPPA affects the functionality of the Golgi apparatus using different approaches. First, we show a fragmentation of the Golgi apparatus in skeletal muscle fibers and in neurons of GMPPA KO mice. A major reorganization is also evident by mass spectrometry of KO tissues with a regulation of several ER- and Golgi-resident proteins. We further show that loss of GMPPA increases the retention of α-DG in the ER. Notably, mannose supplementation can mimic changes in ER and Golgi structure and function in WT cells. In summary, our data underline the importance of a balanced mannose homeostasis for structure and function of the secretory pathway.
Project description:Proteome analysis by data-independent acquisition (DIA) has become a powerful approach to obtain deep proteome coverage, and has gained recent traction for label-free analysis of single cells. However, optimal experimental design for DIA-based single-cell proteomics has not been fully explored, and performance metrics of subsequent data analysis tools remain to be evaluated. Therefore, we here present DIA-ME, a data analysis strategy that exploits the co-analysis of low-input samples with a so-called matching enhancer (ME) of higher input, to increase sensitivity, proteome coverage, and data completeness. We evaluate the matching specificity of DIA-ME by a two-proteome model, and demonstrate that false discovery and false transfers are maintained at low levels when using DIA-NN software, while preserving quantification accuracy. We apply DIA-ME to investigate the proteome response of U-2 OS cells to interferon gamma (IFN-γ) in single cells, and recapitulate the time-resolved induction of IFN-γ response proteins as observed in bulk material. Moreover, we observe co- and anti-correlating patterns of protein expression within the same cell, indicating mutually exclusive protein modules and the co-existence of different cell states. Collectively our data show that DIA-ME is a powerful, scalable, and easy-to-implement strategy for single-cell proteomics.
Project description:Reveal a specific set of proteins important to maintain centromere integrity, through quantitative PICh (Proteomics of Isolated Chromatin). Centromeric chromatin was pulled down through RNA probes annealing specifically to a 300bp-long conserved centromeric sequence.
Project description:Magnaporthe oryzae snodprot1 homologous protein (MSP1) has been shown to act as a pathogen-associated molecular pattern (PAMPs) and trigger PAMP-triggered immunity (PTI) response involving programmed cell death and expression of various defense-related genes in rice. The involvement of several post-translational modifications (PTMs) in the regulation of plant immune response, especially PTI, during pathogen infection is well established, however, the information on the regulatory roles of these PTMs in response to MSP1-induced signaling in rice is currently elusive. Here, we report the phosphoproteome, ubiquitinome, and acetylproteome to investigate the MSP1-induced PTMs alterations in MSP1 overexpressed rice. Our analysis identified a total of 4,666 PTM modified sites in rice leaves including 4,292 phosphosites, 189 ubiquitin sites, and 185 acetylation sites. Among these, PTM status of 437 phosphorylated, 53 ubiquitinated, and 68 acetylated peptides were significantly changed by MSP1. Functional annotation of MSP1 modulated peptides by MapMan analysis revealed that these were majorly associated with cellular immune responses such as signaling, transcription factors, DNA and RNA regulation, and protein metabolism, among others. Taken together, this study uncovers the MSP1-induced PTMs changes in rice proteins and identified several novel components of rice-MSP1 interaction.