Project description:Copy number variation profiles comparing control female Dehong chicken blood DNA with 3 different chicken breeds (white Leghorn, Cobb broiler, and Dou chicken) blood DNA. Each test breed had one male and one female sample, for a total of 6 test DNA samples. The goal is to determine the global copy number variation profiles between chicken breeds.
Project description:To examine global gene expression profile of chicken early paraxial mesoderm differentiation, we microdissected stage 12HH chicken PSM regions into 20 pieces (10 pieces both left-right PSM), including the tail bud, the PSM and somites. We create microarray series using these fragments.
Project description:Copy number variation profiles comparing control female Dehong chiken blood DNA with 11 different chicken breeds(Silkie, Tibetan Chicken, Gallus gallus spadiceus, Bearded Chicken, Jinhu Chicken, Anak Chicken, Beijing Fatty Chicken, Langshan Chicken, Qingyuan partridge Chicken, Shek-Ki Chicken, Wenchang Chicken) blood DNA. Each test breeds had one male and one female sample, totally 22 test DNA samples.Goal is to get the golbal copy number variation profile between chicken breeds.
Project description:HH stage 21 chicken dorsal mesentery is laser microdissected into four morphological compartments, and subject to global expression analyses on Affymetrix Chicken 3' microarray Goal is to identify genes expressed in each of left epitelium, left mesenchyme, right mesenchyme, right epithelium; genes on the left may be direct or indirect transcriptional targets of Pitx2.
Project description:Copy number variation profiles comparing control female Dehong chicken blood DNA with 3 different chicken breeds (white Leghorn, Cobb broiler, and Dou chicken) blood DNA. Each test breed had one male and one female sample, for a total of 6 test DNA samples. The goal is to determine the global copy number variation profiles between chicken breeds. Female Dehong chicken DNA as reference DNA vs. 6 test chicken DNA samples.
Project description:To examine global gene expression profile of chicken early paraxial mesoderm differentiation, we microdissected stage 12HH chicken PSM regions into 20 pieces (10 pieces both left-right PSM), including the tail bud, the PSM and somites. We create microarray series using these fragments. Duplicated 10 fragmented tissues from stage 12 chicken PSM regions. contributor: IGBMC microarray facility
Project description:Adaptation to hypoxia is a complicated and important physiological course for organisms, but the genetic mechanism underlying the adaptation is not fully understood yet. Tibetan Chicken (T), an indigenous chicken breed in China which inhabit in high areas with an altitude above 2,900 meters. Shouguang Chicken(S) and Dwarf Recessive White Chicken (DRW), two lowland chicken breeds, were used as control groups. The heart was the first functional organ to develop during the embryonic development. Furthermore, the heart is an efficient energy converter utilizing the most appropriate fuel for a given environment. Therefore, GeneChip® Chicken Genome Array was employed to identify the differentially expressed genes in embryonic hearts of Tibetan Chicken and two lowland chicken breeds in both hypoxic and normoxic incubating environments with a genome wide profile. Keywords: stress response
Project description:The conservation and development of chicken has considerably affected human activities, but the admixture history of chicken breeds has so far been poorly demonstrated especially for Chinese indigenous breeds. Using genotypes from 580961 single nucleotide polymorphism markers scored in 1201 animals, we evaluate the genetic diversity (heterozygosity and proportion of polymorphic markers), Linkage disequilibrium (LD) decay, population structure (principal component analysis and neighbor-joining tree), genetic differentiation (FST and genetic distance) and migration events (Treemix and f-statistics) of eight domesticated chicken breeds. All population analytical methods reveal patterns of hybridization which occurred after divergence in Tibetan chicken. We argue that chicken migration and admixture followed by trade have been important forces in shaping modern Chinese chicken genomic variation. Moreover, isolation by distance may play critical role in the shaping genomic variation within Eurasia continent chicken breeds.
Project description:Chicken primordial germ cells (PGCs) have an epigenetic signature which differs from the one that mammalian PGCs acquire with their epigenome reprogramming during early embryonic development. In particular, chicken PGCs display a high global amount of histone H3 lysine 9 trimethylation (H3K9me3) compared to somatic cell types. We performed the genome-wide profiling of H3K9me3 and the transcriptome analysis on chicken PGCs compared to embryonic stem cells (ESCs) as a closely related, non germinal cell type.
Project description:Four weeks old male broilers, fed ad libitum or fasted for 16h or 48h were used to describe the evolution of global gene expression profiles in chicken liver during a 48h fasting period using a chicken 20K oligo array. Among the 20460 oligos on the microarray, 13057 were identified as aligning with a unique coding region of the 2.1 Washington University assembly of the chicken sequence genome. So the statistical analyses were performed on this 13057 gene set. A total number of 2062 differentially expressed genes were identified. The number of genes differentially expressed after 48h of fasting compared to the Fed state was 4-fold higher than after 16h of fasting. Analysis was focused on 1162 genes selected among these 2062 genes for which a human ortholog could be identified, thus allowing functional information collect. Quantitative real-time polymerase chain reaction (qRT-PCR) validated our results. Keywords: Chicken fasted, transcriptional profiling, differentially expressed genes