Project description:Microbes play key roles in diverse biogeochemical processes including nutrient cycling. However, responses of soil microbial community at the functional gene level to long-term fertilization, especially integrated fertilization (chemical combined with organic fertilization) remain unclear. Here we used microarray-based GeoChip techniques to explore the shifts of soil microbial functional community in a nutrient-poor paddy soil with long-term (21 years).The long-term fertilization experiment site (set up in 1990) was located in Taoyuan agro-ecosystem research station (28°55’N, 111°27’E), Chinese Academy of Sciences, Hunan Province, China, with a double-cropped rice system. fertilization at various regimes.
2020-09-19 | GSE104014 | GEO
Project description:Metagenomics for long-term fertilization
Project description:To study whether and how soil nitrogen conditions affect the ecological effects of long-term elevated CO2 on microbial community and soil ecoprocess, here we investigated soil microbial community in a grassland ecosystem subjected to ambient CO2 (aCO2, 368 ppm), elevated CO2 (eCO2, 560 ppm), ambient nitrogen deposition (aN) or elevated nitrogen deposition (eN) treatments for a decade. Under the aN condition, a majority of microbial function genes, as measured by GeoChip 4.0, were increased in relative abundance or remained unchanged by eCO2. Under the eN condition, most of functional genes associated with carbon, nitrogen and sulfur cycling, energy processes, organic remediation and stress responses were decreased or remained unchanged by eCO2, while genes associated with antibiotics and metal resistance were increased. The eCO2 effects on fungi and archaea were largely similar under both nitrogen conditions, but differed substantially for bacteria. Coupling of microbial carbon or nitrogen cycling genes, represented by positive percentage and density of gene interaction in association networks, was higher under the aN condition. In accordance, changes of soil CO2 flux, net N mineralization, ammonification and nitrification was higher under the aN condition. Collectively, these results demonstrated that eCO2 effects are contingent on nitrogen conditions, underscoring the difficulty toward predictive modeling of soil ecosystem and ecoprocesses under future climate scenarios and necessitating more detailed studies.
Project description:To study whether and how soil nitrogen conditions affect the ecological effects of long-term elevated CO2 on microbial community and soil ecoprocess, here we investigated soil microbial community in a grassland ecosystem subjected to ambient CO2 (aCO2, 368 ppm), elevated CO2 (eCO2, 560 ppm), ambient nitrogen deposition (aN) or elevated nitrogen deposition (eN) treatments for a decade. Under the aN condition, a majority of microbial function genes, as measured by GeoChip 4.0, were increased in relative abundance or remained unchanged by eCO2. Under the eN condition, most of functional genes associated with carbon, nitrogen and sulfur cycling, energy processes, organic remediation and stress responses were decreased or remained unchanged by eCO2, while genes associated with antibiotics and metal resistance were increased. The eCO2 effects on fungi and archaea were largely similar under both nitrogen conditions, but differed substantially for bacteria. Coupling of microbial carbon or nitrogen cycling genes, represented by positive percentage and density of gene interaction in association networks, was higher under the aN condition. In accordance, changes of soil CO2 flux, net N mineralization, ammonification and nitrification was higher under the aN condition. Collectively, these results demonstrated that eCO2 effects are contingent on nitrogen conditions, underscoring the difficulty toward predictive modeling of soil ecosystem and ecoprocesses under future climate scenarios and necessitating more detailed studies. Fourty eight samples were collected for four different carbon and nitrogen treatment levels (aCaN,eCaN,aCeN and eCeN) ; Twelve replicates in every elevation
Project description:To study long-term elevated CO2 and enriched N deposition interactive effects on microbial community and soil ecoprocess, here we investigated soil microbial community in a grassland ecosystem subjected to ambient CO2 (aCO2, 368 ppm), elevated CO2 (eCO2, 560 ppm), ambient nitrogen deposition (aN) or elevated nitrogen deposition (eN) treatments for a decade. There exist antagonistic CO2×N interactions on microbial functional genes associated with C, N, P S cycling processes. More strong antagonistic CO2×N interactions are observed on C degradation genes than other genes. Remarkably antagonistic CO2×N interactions on soil microbial communities could enhance soil C accumulation.