Project description:The protein parvalbumin (PRV)-beta (PRVB) is the primary cause behind food allergies to bony fish. Although PRVB is a well-characterized protein in many bony fishes, little is known about the hilsa, an anadromous fish with great economic importance and mostly found in Southeast Asia. In this study, we have characterized the hilsa PRV utilizing various proteomic approaches in response to two major riverine habitats and developmental stages. Unique peptide sets correspond to three different PRV isoforms were identified in hilsa muscle tissues. Label-free quantitative proteomic analysis coupled with ELISA revealed higher levels of PRVB in young fish comparative to the adult, irrespective of their riverine habitats. A comparative quantitative analysis of PRVB further demonstrated that hilsa had less PRVB than other commonly consumed freshwater fish species. Multiple reaction monitoring (MRM)-based targeted proteomic approach showed the potential of PRV as a marker protein for allergen quantitation and authenticating the presence of hilsa in a complex freshwater fish mixture. Our findings collectively offer fundamental knowledge on hilsa parvalbumins for further investigation on the food safety and quality evaluation of hilsa fish.
Project description:The forebrain proteome of mangrove rivulus was determined in fish with different social behavior patterns. All fish were from and all experiments done in Professor Ryan Earley's Laboratory at the University of Alabama. Label-free quantitative proteomics was performed using Top3 (PEAKSQ) and spectral counting (Scaffold) approaches.
Project description:Using RNAseq of small RNA libraries isolated from the gill tissue of the Antarctic fish Trematomus bernacchii we have characterized the termal sensitivity of miRNA homologues in these highly stenothermic fish.
Project description:Environmental DNA phylogeography: successful reconstruction of phylogeographic patterns of multiple fish species from a cup of water