Project description:A Trichoderma microarrays composed of 385,000 probes, designed against the genomes of Trichoderma reesei (= Hypocrea jecorina), ID: 431241 (9,129 genes) + Trichoderma virens (= Hypocrea virens), ID: 413071 (11,643 genes) + Trichoderma atroviride (= Hypocrea atroviridis) ID: 197014A (11,643 genes), was constructed (Roche-NimbleGen, Inc., Madison, WI, USA). Probes contained entere transcript sequence. This microarray was used to analyze the transcriptomic changes of T. atroviride IMI 352941 (T11) in three conditions: T11 growing alone, T11 growing at ca 5 mm of V. dahliae V-138I and T11 overgrowing V-138I.
2018-03-09 | GSE66835 | GEO
Project description:Genomic and transcriptomic data of Trichoderma erinaceum F3 strain collected from various biomass sources
Project description:We perform a self hybridisation comprative genomic hybridization (CGH) in order to validate the probe tiling design we done on Trichoderma reesei. This hybridization was done using QM6a wild type strain.
Project description:In this study, we explored the genes involved with the host communication and colonization process through transcriptomic profiling of Trichoderma virens as it colonizes hydroponic maize roots, compared to the fungus without roots present.
Project description:Trichoderma reesei is the main industrial producer of cellulases and hemicellulases used to depolymerize biomass in many biotechnical applications. Many production strains in use have been generated by classical mutagenesis. In this study we characterized genomic alterations in hyperproducing mutants of T. reesei by high-resolution comparative genomic hybridisation tiling array. We carried out aCGH analysis of four hyperproducing strains (QM9123, QM9414, NG14 and RutC-30) using QM6a genome as a reference. ArrayCGH analysis identified dozens of mutations in each strain analyzed.
Project description:We perform a self hybridisation comprative genomic hybridization (CGH) in order to validate the probe tiling design we done on Trichoderma reesei. This hybridization was done using QM6a wild type strain. One biological replicate
Project description:Lactose (1,4-0-M-CM-^_-d-galactopyranosyl-d-glucose), a by-product from cheese manufacture or whey processing industries, is known to induce the formation of plant biomass hydrolyzing enzymes needed for the biorefinery industry in the fungus Trichoderma reesei, but the reason for this induction and the underlying mechanism are not fully understood. Here, we used systems analysis of the Trichoderma reesei transcriptome during utilization of lactose. We found that the respective CAZome encoded glycosyl hydrolases specifically tailored for the attack of monocotyledon xyloglucan. In addition, genes for a high number of putative transporters of the major facilitator superfamily were also induced. Systematic knock out of them identified a gene whose knock-out completely impaired lactose utilization and cellulase induction in Trichoderma reesei. These data shed new light on the mechanism by which Trichoderma reesei metabolizes lactose and illuminate the key role of M-CM-^_-D-galactosides in habitat specificity of this fungus. We used two biological replicas of Trichoderma reesei growing on lactose, glucose and glycerol
Project description:Analyses of new genomic, transcriptomic or proteomic data commonly result in trashing many unidentified data escaping the ‘canonical’ DNA-RNA-protein scheme. Testing systematic exchanges of nucleotides over long stretches produces inversed RNA pieces (here named “swinger” RNA) differing from their template DNA. These may explain some trashed data. Here analyses of genomic, transcriptomic and proteomic data of the pathogenic Tropheryma whipplei according to canonical genomic, transcriptomic and translational 'rules' resulted in trashing 58.9% of DNA, 37.7% RNA and about 85% of mass spectra (corresponding to peptides). In the trash, we found numerous DNA/RNA fragments compatible with “swinger” polymerization. Genomic sequences covered by «swinger» DNA and RNA are 3X more frequent than expected by chance and explained 12.4 and 20.8% of the rejected DNA and RNA sequences, respectively. As for peptides, several match with “swinger” RNAs, including some chimera, translated from both regular, and «swinger» transcripts, notably for ribosomal RNAs. Congruence of DNA, RNA and peptides resulting from the same swinging process suggest that systematic nucleotide exchanges increase coding potential, and may add to evolutionary diversification of bacterial populations.
Project description:This SuperSeries is composed of the following subset Series: GSE19832: Trichoderma virens transcript levels during mycoparasitism GSE23382: Trichoderma atroviride transcript levels during mycoparasitism GSE23410: Trichoderma reesei transcript levels during mycoparasitism Refer to individual Series