Project description:Transcriptomic data was obtained from adults of the stink bug Nezara viridula to complement biochemical enzymatic activity analysis performed for digestive enzymes. Pooled reads from all sample types were used for de novo assembly of a reference transcriptome. After mapping reads to reference, differential expression was performed between the different tissues of the same diet or between the same tissue in different diets.
Project description:A frightening resurgence of bed bug infestations has occurred over the last 10 years in the US. Current chemical methods have been inadequate for controlling bed bugs due to widespread insecticide resistance. Little is known about the mechanisms of resistance present in US bed bug populations, making it extremely difficult to develop intelligent strategies to control this pest. We have identified bed bugs collected in Richmond, VA which exhibit both kdr-type (L925I) and metabolic resistance to pyrethroid insecticides. LD50 bioassays determined resistance ratios of ~6000-fold to the insecticide deltamethrin, with contact bioassays confirming cross-resistance to several other labeled formulations. To identify metabolic genes potentially involved in the detoxification of pyrethroids, we performed deep-sequencing of the adult bed bug transcriptome, obtaining more than 2.5 million reads on the 454 titanium platform. Following assembly, analysis of newly identified gene transcripts in both Harlan (susceptible) and Richmond (resistant) bed bugs revealed several candidate cytochrome P450 and carboxyesterase genes which were significantly over-expressed in the resistant strain, consistent with the idea of increased metabolic resistance. These data will accelerate efforts to understand the biochemical basis for insecticide resistance in bed bugs, and provide molecular markers to assist in the surveillance of metabolic resistance.
Project description:Upon fertilization, the mouse zygotic genome is activated and maternal RNAs as well as proteins are degraded. Early developmental programs are built on proteins encoded by zygotic mouse genes that are needed to guide early cell fate commitment. The box C/D snoRNA ribonucleoprotein (snoRNP) complex is required for rRNA biogenesis, ribosome assembly and pre-mRNA splicing essential for protein translation. Zinc finger, HIT type 3 (encoded by Znhit3) is previously identified as a component in the assembly of the box C/D snoRNP complex. Using gene-edited mice, it identifies Znhit3 as an early embryonic gene whose ablation reduces protein translation and prevents mouse embryos development beyond the morula stage. The absence of ZNHIT3 leads to decreased snoRNA and rRNA abundance which causes defects of ribosomes and mRNA splicing. Microinjection of Znhit3 cRNA partially rescues the phenotype and confirms that ZNHIT3 is required for mRNA translation during preimplantation development.
Project description:A frightening resurgence of bed bug infestations has occurred over the last 10 years in the US. Current chemical methods have been inadequate for controlling bed bugs due to widespread insecticide resistance. Little is known about the mechanisms of resistance present in US bed bug populations, making it extremely difficult to develop intelligent strategies to control this pest. We have identified bed bugs collected in Richmond, VA which exhibit both kdr-type (L925I) and metabolic resistance to pyrethroid insecticides. LD50 bioassays determined resistance ratios of ~6000-fold to the insecticide deltamethrin, with contact bioassays confirming cross-resistance to several other labeled formulations. To identify metabolic genes potentially involved in the detoxification of pyrethroids, we performed deep-sequencing of the adult bed bug transcriptome, obtaining more than 2.5 million reads on the 454 titanium platform. Following assembly, analysis of newly identified gene transcripts in both Harlan (susceptible) and Richmond (resistant) bed bugs revealed several candidate cytochrome P450 and carboxyesterase genes which were significantly over-expressed in the resistant strain, consistent with the idea of increased metabolic resistance. These data will accelerate efforts to understand the biochemical basis for insecticide resistance in bed bugs, and provide molecular markers to assist in the surveillance of metabolic resistance. Deep sequencing was performed from total RNA isolated from adult male bed bugs using the Titanium 454 platform
Project description:Genome/chromosome organization is highly ordered and controls nuclear events. Here, we show that the TATA box-binding protein (TBP) interacts with the Cnd2 kleisin subunit of condensin to mediate interphase and mitotic chromosome organization in fission yeast. TBP recruits condensin onto RNA polymerase III-transcribed (Pol III) genes and highly transcribed Pol II genes; condensin in turn associates these genes with centromeres. Inhibition of the Cnd2-TBP interaction disrupts condensin localization across the genome and the proper assembly of mitotic chromosomes, leading to severe defects in chromosome segregation and eventually causing cellular lethality. We propose that the Cnd2-TBP interaction coordinates transcription with chromosomal architecture by linking dispersed gene loci with centromeres. This chromosome arrangement can contribute to the efficient transmission of physical force at the kinetochore to chromosomal arms, thereby supporting the fidelity of chromosome segregation. Genome-wide distributions of condensin and Pol III factors in fission yeast.