Project description:Fibromyalgia is a chronic pain syndrome characterized by widespread pain. The pathophysiology of fibromyalgia is not clearly understood and there are no specific biomarkers available for accurate diagnosis. Here we define genomic signatures using high throughput RNA sequencing on 96 fibromyalgia and 93 matched controls. Our findings revealed two major fibromyalgia-associated expression signatures. The first group included 44 patients with a signature enriched for gene expression associated with extracellular matrix and downregulation of RhoGDI signaling pathway. The second group included 31 patients and showed a profound reduction in the expression of inflammatory mediators with an increased expression of genes involved in the CLEAR signaling pathway. These results suggest defective tissue homeostasis associated with the extra-cellular matrix and cellular program that regulates lysosomal biogenesis and participates in macromolecule clearance in fibromyalgia. Further elucidation of these pathways will lead to development of accurate diagnostic markers, and effective therapeutic options for fibromyalgia.
Project description:Hypoxic ischemic brain damage (HIBD) is the primary cause of neurological deficits in neonates, leading to long-term cognitive impairment. Recent studies have demonstrated that gut microbiota plays a crucial role in the development of cognitive impairment after brain injury, known as the microbiota-gut-brain axis.
Project description:Brain metastases (BrMs) are the most common brain tumors in patients and are associated with poor prognosis. Investigating the systemic and environmental factors regulating BrM biology represents an important strategy to develop effective treatments. Towards this goal, we explored the contribution of the gut microbiome to BrM development by using in vivo breast-BrM models under germ-free conditions or antibiotic treatment. This revealed a detrimental role of gut microbiota in fostering BrM initiation. We thus evaluated the impact of antibiotics and BrM outgrowth on the gut-brain axis. We found the bacterial genus Alistipes was differentially present under antibiotic treatment and BrM progression. In parallel, we quantified circulating metabolites, revealing kynurenic acid as a differentially abundant molecule which impaired the interaction between cancer cells and the brain vasculature in ex vivo functional assays. Together, these results illuminate the potential role of gut microbiota in modulating breast-BrM via the gut-to-brain axis.
Project description:FM is a complex syndrome with physiological, genetics and environmental factors involved. It can present changes in functional neuroimaging, in cortical excitability measurements performed by transcranial magnetic stimulation and in grey matter density. Similarly, it has been shown that patients with FM have abnormal autonomic control, inflammatory profile and dysfunctional hypothalamic–pituitary–adrenal axis leading to disruptive sleep and fatigue. We characterized clinical and neurophysiological parameters and peripheral blood DNA methylation profiles of patients with FM and compared them to sex and age matched healthy controls. We hypothesized that these exploratory analyses could provide mechanistic insights into the pathophysiology of FM and possibly contribute to the future development of biological markers of diagnosis.We showed that patients with fibromyalgia have different (mainly hypo-) methylated CpG sites related to genes implicated in immune system and response to external stress pathways and that this methylation profile is related to a dysfunctional connectivity in pain network, adding evidence to consider fibromyalgia as a DOHAD disorder.
Project description:Brain and central nervous system (CNS) tumors are the leading cause of cancer-related deaths in both adults and children, particularly affecting those aged 0–14 years. Efforts to develop targeted therapies have largely been unsuccessful, with limited improvement in survival rates. This underscores the urgent need for more effective treatments. Recent research highlights the importance of the gut microbiota and its collective genomes, known as the microbiome, in maintaining overall health. The microbiome helps prevent infections and regulates immune responses both locally and throughout the body. There is a strong connection between the gastrointestinal (GI) system and the CNS, as the CNS plays a crucial role in controlling the GI tract’s function and balance. The relationship between the gut microbiota and the brain, referred to as the microbiota-gut-brain axis, is a complex interaction that may influence CNS cancer development and treatment outcomes. In this study, researchers examined the gut microbiota composition in a group of pediatric cancer patients, focusing on those with CNS tumors.
Project description:Major depressive disorder (MDD) is a leading cause of disability around the world and contributes greatly to the global burden of disease. Mounting evidence suggests that gut microbiota dysbiosis may be involved in the pathophysiology of MDD through the microbiota–gut–brain axis. Recent research suggests that epigenetic modifications might relate to depression. However, our knowledge of the role of epigenetics in host–microbe interactions remains limited. In the present study, we used a combination of affinity enrichment and high-resolution liquid chromatography tandem mass spectrometry analysis to identify hippocampal acetylated proteins in germ-free(GF) and specific pathogen-free(SPF) mice. In total, 986 lysine acetylation sites in 543 proteins were identified, of which 747 sites in 427 proteins were quantified. Motif analysis identified several conserved sequences surrounding the acetylation sites, including D*Kac, DKac, KacY, KacD, and D**Kac. Gene ontology annotations revealed that these differentially expressed acetylated proteins were involved in multiple biological functions and mainly located in mitochondria. In addition, pathway enrichment analysis showed that oxidative phosphorylation and the tricarboxylic acid (TCA) cycle II (eukaryotic), both of which are exclusively localized to the mitochondria, were the primarily disturbed functions. Taken together, this study indicates that lysine acetylation changes may play a pivotal role in the mitochondrial dysfunction by which gut microbiota regulate brain function and behavioral phenotypes.
Project description:Background: The long-term high-fat, high-sugar diet exacerbates type 2 diabetes mellitus (T2DM)-related cognitive impairments. The negative impact of poor dietary patterns on brain development and neurological function may be related to gut microbiota disturbance. The role of phlorizin in mitigating glucose and lipid metabolism disorders is well documented. However, the protective effect of phlorizin on diabetes-related cognitive dysfunction is unclear. Therefore, the present study aimed to investigate the effect of dietary supplementation of phlorizin on high-fat and high-fructose diet (HFFD)-induced cognitive dysfunction and evaluate the crucial role of the microbiota-gut-brain axis. Results: Dietary supplementation of phlorizin for 14 weeks effectively prevented glucolipid metabolism disorder, spatial learning impairment, and memory impairment in HFFD mice. In addition, phlorizin improved the HFFD-induced decrease in synaptic plasticity, neuroinflammation, and excessive activation of microglia in the hippocampus. Transcriptomics analysis shows that the protective effect of phlorizin on cognitive impairment was associated with increased expression of neurotransmitters and synapse-related genes in the hippocampus. Phlorizin treatment alleviated colon microbiota disturbance, mainly manifested by an increase in gut microbiota diversity and the abundance of short-chain fatty acid (SCFA)-producing bacteria. The level of microbial metabolites, including SCFA, inosine 5'-monophosphate (IMP), and D (-)-beta-hydroxybutyric acid (BHB) were also significantly increased after phlorizin treatment. Moreover, integrating multiomics analysis observed tight connections between phlorizin-regulated genes, microbiota, and metabolites. Furthermore, removal of the gut microbiota via antibiotics treatment diminished the protective effect of phlorizin against HFFD-induced cognitive impairment, underscoring the critical role of the gut microbiota in mediating cognitive behavior. Importantly, supplementation with SCFA and BHB alone mimicked the regulatory effects of phlorizin on cognitive function. Conclusions: These results indicate that gut microbiota and their metabolites mediate the ameliorative effect of phlorizin on HFFD-induced cognitive impairment. Therefore, phlorizin can be used as an easy-to-implement nutritional therapy to prevent and alleviate metabolism-related neurodegenerative diseases by targeting the regulation of the microbiome-gut-brain axis.
2024-03-20 | GSE261887 | GEO
Project description:Gut microbiota in fibromyalgia
Project description:Gut microbiota plays an important role during early development via bidirectional gut- brain signaling. We aimed to explore the potential link between gut microbiota/gut derived metabolites and sympathoadrenal stress responsivity