Project description:Boreal toads (Anaxyrus boreas boreas) of the Southern Rocky Mountain population are declining due to the introduction of the chytrid fungus Batrachochytrium dendrobatidis (Bd). Boreal toads in Colorado are generally susceptible to Bd infection, but some Bd-tolerant populations persist in parts of the Southern Rocky Mountain and broader Eastern boreal toad population. We conducted a Bd challenge with lab-reared sibling toads from Bd-susceptible Colorado and purportedly Bd-tolerant Utah populations and report on transcriptomic responses to Bd during late infection in skin and liver tissue. Fewer immune genes were expressed in response to Bd in Colorado toads, but with greater upregulation compared to Utah toads, indicating a dysregulated immune response. Signatures of Bd-tolerance in Utah toads included more moderate upregulation in immune gene expression and a significantly enriched suite of gene functions related to innate and adaptive immune responses. Our transcriptomic results support the notion that Utah toads are tolerant to Bd, rather than resistant, carrying Bd loads similar to Colorado yet having a unique transcriptomic profile and presenting minimal clinical signs of chytridiomycosis. We conclude that closely related populations have divergent transcriptomic responses to Bd with a dysregulated immune response in Bd-susceptible toads.
Project description:Peatlands of the Lehstenbach catchment (Germany) house so far unidentified microorganisms with phylogenetically novel variants of the dissimilatory (bi)sulfite reductase genes dsrAB. These genes are characteristic for microorganisms that reduce sulfate, sulfite, or some organosulfonates for energy conservation, but can also be present in anaerobic syntrophs. However, nothing is currently known regarding the abundance, community dynamics, and biogeography of these dsrAB-carrying microorganisms in peatlands. To tackle these issues, soils from a Lehstenbach catchment site (Schlöppnerbrunnen II fen) from different depths were sampled at three time points over a six-year period to analyze the diversity and distribution of dsrAB-containing microorganisms by a newly developed functional gene microarray and quantitative PCR assays. Members of novel, uncultivated dsrAB lineages (approximately representing species-level groups) (i) dominated a temporally stable but spatially structured dsrAB community and (ii) represented ‘core’ members (up to 1-1.7% relative abundance) of the autochthonous microbial community in this fen. In addition, denaturing gradient gel electrophoresis (DGGE)- and clone library-based comparison of the dsrAB diversity in soils from a wet meadow, three bogs, and five fens of various geographic locations (distance ~1-400 km), identified one Syntrophobacter-related and nine novel dsrAB lineages to be widespread in low-sulfate peatlands. Signatures of biogeography in dsrB-DGGE data were not correlated with geographic distance but could largely be explained by soil pH and wetland type, implying that distribution of dsrAB-carrying microorganisms in wetlands on the scale of a few hundred kilometers is not limited by dispersal but determined by contemporary environmental conditions.
Project description:Here, we applied a microarray-based metagenomics technology termed GeoChip 5.0 to examined functional gene structure of microbes in three biomes, including boreal, temperate and tropical area.
Project description:Peatlands of the Lehstenbach catchment (Germany) house so far unidentified microorganisms with phylogenetically novel variants of the dissimilatory (bi)sulfite reductase genes dsrAB. These genes are characteristic for microorganisms that reduce sulfate, sulfite, or some organosulfonates for energy conservation, but can also be present in anaerobic syntrophs. However, nothing is currently known regarding the abundance, community dynamics, and biogeography of these dsrAB-carrying microorganisms in peatlands. To tackle these issues, soils from a Lehstenbach catchment site (Schlöppnerbrunnen II fen) from different depths were sampled at three time points over a six-year period to analyze the diversity and distribution of dsrAB-containing microorganisms by a newly developed functional gene microarray and quantitative PCR assays. Members of novel, uncultivated dsrAB lineages (approximately representing species-level groups) (i) dominated a temporally stable but spatially structured dsrAB community and (ii) represented ‘core’ members (up to 1-1.7% relative abundance) of the autochthonous microbial community in this fen. In addition, denaturing gradient gel electrophoresis (DGGE)- and clone library-based comparison of the dsrAB diversity in soils from a wet meadow, three bogs, and five fens of various geographic locations (distance ~1-400 km), identified one Syntrophobacter-related and nine novel dsrAB lineages to be widespread in low-sulfate peatlands. Signatures of biogeography in dsrB-DGGE data were not correlated with geographic distance but could largely be explained by soil pH and wetland type, implying that distribution of dsrAB-carrying microorganisms in wetlands on the scale of a few hundred kilometers is not limited by dispersal but determined by contemporary environmental conditions. 36 dsrAB clones for chip evaluation, 33 hybridizations of labeled dsrAB RNA from environmental peatsoil samples
Project description:Tardigrades (Tardigrada) are a phylum of micrometazoans found in all biomes on Earth, but their ecology and habitat preferences remain vastly understudied. Boreal peatlands include a diversity of habitat types and high structural heterogeneity that represents an interesting system to study some of the poorly known habitat preferences of tardigrades. Here, we investigate for the first time tardigrade communities in peatland mosses and the latter's potential associations with key environmental variables. We collected 116 moss samples from 13 sites representing different peatland types and management histories. We found that tardigrades are common and diverse in boreal peatlands, as tardigrades were present in 72% of the collected samples and we identified 14 tardigrade genera. Tardigrade abundance seemed to increase alongside the increasing tree basal area and the density was higher in the microtopographic level further from the water table level, that is, hummocks (mean 117/moss gram) than in lawns/hollows (mean 84/moss gram). Furthermore, the highest tardigrade density was found in the moss taxa that are associated with forested peatland types (i.e., feather mosses) (321 mean/moss gram). Finally, we found interesting patterns regarding tardigrade functional diversity, as carnivorous tardigrades were found only in peatlands with tree basal area > 20 m2 and mostly in hummocks. Our study demonstrates that the habitat heterogeneity of peatlands (e.g., variation in moisture and vegetation cover) represents an interesting system to study tardigrade ecology and habitat preferences. However, since we found variation in tardigrade abundance and communities across peatland types and microhabitats within peatlands, our results highlight that such studies should be conducted with numerous replicate samples and a systematic study design that properly addresses the habitat heterogeneity between and within different peatland types.
Project description:Vertical stratification of peatland microbial communities follows a gradient of functional types across hummock-hollow microtopologies
Project description:Overwintering peat fires are re-emerging in snow-covered Arctic-boreal regions, releasing unprecedented levels of carbon into the atmosphere and exacerbating climate change. Despite the critical role of fire-snow interactions in these processes, our understanding of them remains limited. Herein, we conducted small-scale outdoor experiments (20 × 20 × 20 cm3) at subzero temperatures (-5 ± 5 °C) to investigate the impact of natural snowfall and accumulated snow layers (up to 20 cm thick) on shallow smoldering peat fires. We found that even heavy natural snowfalls (a maximum water equivalent snowfall intensity of 1.1 mm/h or a 24 h accumulated snowfall water equivalent precipitation of 7.9 mm) cannot suppress a shallow smoldering peat fire. A thick snow cover on the peat surface can extract heat from the burning front underneath, and the minimum thickness of the snow layer to extinguish the peat fire was found to be 9 ± 1 cm at subzero temperatures, agreeing well with the theoretical analysis. Furthermore, larger-scale field demonstrations (1.5 × 1.5 m2) were conducted to validate the small-scale experimental phenomena. This work helps us to understand the interactions between fire and snow and reveals the persistence of smoldering wildfires under cold environments.
Project description:Peatlands play a crucial role in global climate protection as carbon sinks and their rewetting is increasingly significant but poses economic challenges for agriculture. A promising application for rewetted peatlands is the cultivation of Drosera rotundifolia L., a medicinal plant with potential for sustainable phytopharmaceutical development. The plant's bioactive compounds, particularly flavonoids and naphthoquinones, exhibit biofilm-inhibiting properties against multidrug-resistant, ESBL-producing E. coli strains, offering new therapeutic options. This study investigates the molecular mechanisms of these compounds in biofilm inhibition through proteomic analyses. Specific fractions of flavonoids and naphthoquinones, as well as individual substances like 7-methyl juglone and 2’’-O-galloyl hyperoside, are analyzed. Results show that flavonoids from Drosera rotundifolia L. likely affect biofilm formation by creating an iron-poor environment through iron complexation and additionally influence polyamine balance, reducing intracellular spermidine levels. Further investigations include assays for iron complexation and analysis of polyamines confirmed the proteomic data. In-silico docking studies identify potential molecular targets of the bioactive compounds. Safety evaluations through cytotoxicity tests in 3D cell cultures and the Galleria mellonella in-vivo model confirmed the safety of the extracts used. These findings highlight Drosera rotundifolia L. as a promising candidate for new phytopharmaceuticals and support the sustainable use of rewetted peatlands.