Project description:Comparative analysis of tobacco leaves transcriptomes unveils carotenoid pathway potentially determined the characteristics of aroma compounds in different environmental regions. Tobacco (Nicotiana tabacum) is a sensitive crop to environmental changes, and a tobacco with unique volatile aroma fractions always formed in specific ecological conditions. In order to investigate the differential expressed genes caused by environmental changes and reveal the formation mechanism of characteristics of tobacco in three different aroma tobacco regions of Guizhou Province, Agilent tobacco microarray was adapted for transcriptome comparison of tobacco leaves in medium aroma tobacco region Kaiyang and light aroma tobacco regions Weining and Tianzhu. Results showed that there was big difference among the gene expression profiles of tobacco leaves in different environmental conditions. A total of 517 differential expressed genes (DEGs) between Weining and Tianzhu were identified, while 733 and 1,005 genes differentially expressed between Longgang and another two tobacco regions Weining and Tianzhu, respectively. Compared with Longgang, up-regulated genes in Weining and Tianzhu were likely involved in secondary metabolism pathways, especially carotenoid pathway, including PHYTOENE SYNTHASE, PHYTOENE DEHYDROGENASE, LYCOPENE ε-CYCLASE, CAROTENOID β-HYDROXYLASE and CAROTENOID CLEAVAGE DIOXYGENASE 1 genes, while most down-regulated genes played important roles in response to temperature and light radiation, such as heat shock proteins. Gene Ontology and MapMan analyses demonstrated that the DEGs among different environmental regions were significantly enriched in light reaction of photosystem II, response of stimulus and secondary metabolism, suggesting they played crucial roles in environmental adaptation and accumulation of aroma compounds in tobacco plants. Through comprehensive transcriptome comparison, we not only identified several stress response genes in tobacco leaves from different environmental regions but also highlighted the importance of carotenoid pathway genes for characteristics of aroma compounds in specific growing regions. Our study primarily laid the foundation for further understanding the molecular mechanism of environmental adaptation of tobacco plants and molecular regulation of aroma substances in tobacco leaves. In order to investigate the differential expressed genes caused by environmental changes and reveal the formation mechanism of characteristics of tobacco in three different aroma tobacco regions of Guizhou Province, Agilent tobacco microarray was adapted for transcriptome comparison of tobacco leaves in medium aroma tobacco region Kaiyang and light aroma tobacco regions Weining and Tianzhu.
Project description:To investigate the molecular mechanism of tobacco flower in response to the cold treatment, transcriptomic analysis was performed using Agilent Tobacco Gene Expression Microarrays.
Project description:Mulberry (Morus atropurpurea) is an important economic woody tree with rapid growth rate and large biomass, which had great potential for heavy metals remediation. To further understand the mechanisms involved in cadmium accumulation and detoxification in mulberry, we carried out a transcriptomic study to get insights into the molecular mechanisms of the mulberry response to cadmium stress using RNA-seq analysis with BGISEQ-500.
2022-06-30 | GSE152672 | GEO
Project description:Transcriptome sequencing of tobacco under cadmium stress
Project description:Comparative analysis of tobacco leaves transcriptomes unveils carotenoid pathway potentially determined the characteristics of aroma compounds in different environmental regions. Tobacco (Nicotiana tabacum) is a sensitive crop to environmental changes, and a tobacco with unique volatile aroma fractions always formed in specific ecological conditions. In order to investigate the differential expressed genes caused by environmental changes and reveal the formation mechanism of characteristics of tobacco in three different aroma tobacco regions of Guizhou Province, Agilent tobacco microarray was adapted for transcriptome comparison of tobacco leaves in medium aroma tobacco region Kaiyang and light aroma tobacco regions Weining and Tianzhu. Results showed that there was big difference among the gene expression profiles of tobacco leaves in different environmental conditions. A total of 517 differential expressed genes (DEGs) between Weining and Tianzhu were identified, while 733 and 1,005 genes differentially expressed between Longgang and another two tobacco regions Weining and Tianzhu, respectively. Compared with Longgang, up-regulated genes in Weining and Tianzhu were likely involved in secondary metabolism pathways, especially carotenoid pathway, including PHYTOENE SYNTHASE, PHYTOENE DEHYDROGENASE, LYCOPENE ε-CYCLASE, CAROTENOID β-HYDROXYLASE and CAROTENOID CLEAVAGE DIOXYGENASE 1 genes, while most down-regulated genes played important roles in response to temperature and light radiation, such as heat shock proteins. Gene Ontology and MapMan analyses demonstrated that the DEGs among different environmental regions were significantly enriched in light reaction of photosystem II, response of stimulus and secondary metabolism, suggesting they played crucial roles in environmental adaptation and accumulation of aroma compounds in tobacco plants. Through comprehensive transcriptome comparison, we not only identified several stress response genes in tobacco leaves from different environmental regions but also highlighted the importance of carotenoid pathway genes for characteristics of aroma compounds in specific growing regions. Our study primarily laid the foundation for further understanding the molecular mechanism of environmental adaptation of tobacco plants and molecular regulation of aroma substances in tobacco leaves.
Project description:Drought stress response is a complex trait regulated at multiple levels. In the past few years, molecular and genomic studies have shown that several drought responsive genes (DRGs) with various functions are induced by drought stresses, and that various transcription factors (TFs) are involved in the regulation of stress-inducible genes. In addition to those DRGs mentioned above, microRNAs (miRNAs) are important regulators of gene expression at the posttranscriptional level by repressing mRNA expression. There is a complex interplay between transcriptional and post-transcriptional regulation of drought response that has not been extensively characterized in tobacco. In order to fully understand DRGs (including TFs) and different roles of miRNAs involved in the stress response, we sequenced and analysed three Digital Gene Expression (DGE) libraries in roots from drought treated tobacco plants, and four small RNA populations in roots, stems and leaves from control or drought treated tobacco plants. We identified 276 candidate DRGs in tobacco with sequence similarities to 64 known DRGs from model plants and crops and about 40% were TFs including WRKY, NAC, ERF and bZIP families. Furthermore, Out of these tobacco DRGs, 54differentially expressed DRGs included 21 TFs, which belonged to 24 TFs families such as NAC (6), MYB (4), ERF (10) and bZIP (1). Additionally, we confirmed expression of 39 known miRNA families (122 members) and five conserved miRNA families, which showed differential regulation under drought stress. Targets of miRNAs were further surveyed based on a recently published study, in which ten targets were DRGs. Finally, an integrated gene regulatory network has been proposed for the molecular mechanisms of the response of tobacco roots to drought stress using differentially expressed DRGs, the changed expression profiles of miRNAs and their target transcripts as a basis base on previous studies. In general, our data provide valuable information for future studies of the molecular mechanisms underlying tobacco roots in response to drought resistance in tobacco and other plants.
2013-12-20 | GSE43058 | GEO
Project description:Integrative metabolome and transcriptome analyses reveal the molecular mechanism of thermal stress response in tobacco leaves