Project description:We have isolated and characterized several bacteriophages infecting Pseudomonas aeruginosa distantly related to Felix O1 virus and proposed they form a new subfamily named Felixounavirinae. The infectious cycle of bacteriophages belonging to this subfamily has not been studied yet in terms of gene expression. The present study reports the RNA-Seq analysis of bacteriophage PAK_P3 infecting PAK strain of P. aeruginosa. RNA profile of Host and Phage at 0min, 3.5min and 13 min after infection of Pseudomonas aeruginosa PAK strain with the Pseudomonas phage PAK P3. Three biological replicates for each time point.
Project description:Quorum sensing (QS) is the cell density-dependent virulence factor regulator in Pseudomonas aeruginosa. Here, we elucidate PIT2, a phage-encoded inhibitor of the QS regulator LasR, derived from the lytic Pseudomonas phage LMA2. PIT2 inhibits the effectors PrpL and LasA of the type 2 secretion system of P. aeruginosa and attenuates bacterial virulence towards HeLa cells and in Galleria mellonella. Using RNAseq-based differential gene expression analysis, the effect of PIT2 on the LasR regulatory network was revealed. Moreover, the specific interaction between LasR and PIT2 was determined. These data expand our knowledge on phage-encoded modulators of the bacterial metabolism, as this examples an anti-virulence protein derived from a lytic phage. From an applied perspective, this phage protein reveals and exploits an interesting anti-virulence target in P. aeruginosa. As such, it lays the foundation for a new phage-inspired anti-virulence strategy to combat multidrug resistant pathogens and opens the door for SynBio applications.
Project description:Virulent bacteriophages (or phages) are viruses that specifically infect and lyse a bacterial host. When multiple phages co-infect a bacterial host, the extent of lysis, dynamics of bacteria-phage and phage-phage interactions are expected to vary. The objective of this study is to identify the factors influencing the interaction of two virulent phages with different Pseudomonas aeruginosa growth states (planktonic, an infected epithelial cell line, and biofilm) by measuring the bacterial time-kill and individual phage replication kinetics. A single administration of phages effectively reduced P. aeruginosa viability in planktonic conditions and infected human lung cell cultures, but phage-resistant variants subsequently emerged. In static biofilms, the phage combination displayed initial inhibition of biofilm dispersal, but sustained control was achieved only by combining phages and meropenem antibiotic. In contrast, adherent biofilms showed tolerance to phage and/or meropenem, suggesting a spatiotemporal variation in the phage-bacterial interaction. The kinetics of adsorption of each phage to P. aeruginosa during single- or co-administration were comparable. However, the phage with the shorter lysis time depleted bacterial resources early and selected a specific nucleotide polymorphism that conferred a competitive disadvantage and cross-resistance to the second phage. The extent and strength of this phage-phage competition and genetic loci conferring phage resistance, are, however, P. aeruginosa genotype dependent. Nevertheless, adding phages sequentially resulted in their unimpeded replication with no significant increase in bacterial host lysis. These results highlight the interrelatedness of phage-phage competition, phage resistance and specific bacterial growth state (planktonic/biofilm) in shaping the interplay among P. aeruginosa and virulent phages.
Project description:Analysis of Pseudomonas aeruginosa PAO1 treated with 200 µM sphingomyelin. Results provide insight into the response to sphingomyelin in P. aeruginosa.
Project description:Bacteriophages (hereafter “phages”) are ubiquitous predators of bacteria in the natural world, but interest is growing in their development into antibacterial therapy as complement or replacement for antibiotics. However, bacteria have evolved a huge variety of anti-phage defense systems allowing them to resist phage lysis to a greater or lesser extent, and in pathogenic bacteria these inevitably impact phage therapy outcomes. In addition to dedicated phage defense systems, some aspects of the general stress response also impact phage susceptibility, but the details of this are not well known. In order to elucidate these factors in the opportunistic pathogen Pseudomonas aeruginosa, we used the laboratory-conditioned strain PAO1 as host for phage infection experiments as it is naturally poor in dedicated phage defense systems. Screening by transposon insertion sequencing indicated that the uncharacterized operon PA3040-PA3042 was potentially associated with resistance to lytic phages. However, we found that its primary role appeared to be in regulating biofilm formation. Its expression was highly growth-phase dependent and responsive to phage infection and cell envelope stress.
Project description:Purpose: The purpose of this study was to investigate the effect of quorum sensing on phage infection. Methods: We constructed the lasR gene knockout strain of Pseudomonas aeruginosa PAO1 and performed transcriptome sequencing.