Project description:Gut microbiome research is rapidly moving towards the functional characterization of the microbiota by means of shotgun meta-omics. Here, we selected a cohort of healthy subjects from an indigenous and monitored Sardinian population to analyze their gut microbiota using both shotgun metagenomics and shotgun metaproteomics. We found a considerable divergence between genetic potential and functional activity of the human healthy gut microbiota, in spite of a quite comparable taxonomic structure revealed by the two approaches. Investigation of inter-individual variability of taxonomic features revealed Bacteroides and Akkermansia as remarkably conserved and variable in abundance within the population, respectively. Firmicutes-driven butyrogenesis (mainly due to Faecalibacterium spp.) was shown to be the functional activity with the higher expression rate and the lower inter-individual variability in the study cohort, highlighting the key importance of the biosynthesis of this microbial by-product for the gut homeostasis. The taxon-specific contribution to functional activities and metabolic tasks was also examined, giving insights into the peculiar role of several gut microbiota members in carbohydrate metabolism (including polysaccharide degradation, glycan transport, glycolysis and short-chain fatty acid production). In conclusion, our results provide useful indications regarding the main functions actively exerted by the gut microbiota members of a healthy human cohort, and support metaproteomics as a valuable approach to investigate the functional role of the gut microbiota in health and disease.
Project description:We have previously demonstrated that the gut microbiota can play a role in the pathogenesis of conditions associated with exposure to environmental pollutants. It is well accepted that diets high in fermentable fibers such as inulin can beneficially modulate the gut microbiota and lessen the severity of pro-inflammatory diseases. Therefore, we aimed to test the hypothesis that hyperlipidemic mice fed a diet enriched with inulin would be protected from the pro-inflammatory toxic effects of PCB 126.
Project description:In the presented study, in order to unravel gut microbial community multiplicity and the influence of maternal milk nutrients (i.e., IgA) on gut mucosal microbiota onset and shaping, a mouse GM (MGM) was used as newborn study model to discuss genetic background and feeding modulation on gut microbiota in term of symbiosis, dysbiosis and rebiosis maintenance during early gut microbiota onset and programming after birth. Particularly, a bottom-up shotgun metaproteomic approach, combined with a computational pipeline, has been compred with a culturomics analysis of mouse gut microbiota, obtained by MALDI-TOF mass spectrometry (MS).
Project description:Gut microbiota comparation of Young mice (n=10), Old mice, Young_yFMT (Young mice 14 days after transplant feces from young mice, n=10) and Young_oFMT (Young mice 14 days after transplant feces from old mice, n=10), Antibiotic group (Cefazolin, n=8).
Project description:Healthy aging relies on a symbiotic host–microbiota relationship. The age-associated decline of the immune system can pose a threat in this delicate equilibrium. In this work, we investigated how the functional deterioration of T cells can impact host–microbiota symbiosis and gut barrier integrity and the implications of this deterioration for inflammaging, senescence, and health decline. Using the Tfamfl/flCd4Cre mouse model, we found that T cell failure compromised gut immunity leading to a decrease in T follicular and regulatory T (Treg) cells and an accumulation of highly proinflammatory and cytotoxic T cells. These alterations were associated with intestinal barrier disruption and gut dysbiosis. Microbiota depletion or adoptive transfer of total CD4 T cells or a Treg cell–enriched pool prevented gut barrier dysfunction and mitigated premature inflammaging and senescence, ultimately enhancing healthspan in this mouse model. Thus, a competent CD4 T cell compartment is critical to ensure healthier aging by promoting host–microbiota mutualism and gut barrier integrity.
Project description:Healthy aging relies on a symbiotic host–microbiota relationship. The age-associated decline of the immune system can pose a threat in this delicate equilibrium. In this work, we investigated how the functional deterioration of T cells can impact host–microbiota symbiosis and gut barrier integrity and the implications of this deterioration for inflammaging, senescence, and health decline. Using the Tfamfl/flCd4Cre mouse model, we found that T cell failure compromised gut immunity leading to a decrease in T follicular and regulatory T (Treg) cells and an accumulation of highly proinflammatory and cytotoxic T cells. These alterations were associated with intestinal barrier disruption and gut dysbiosis. Microbiota depletion or adoptive transfer of total CD4 T cells or a Treg cell–enriched pool prevented gut barrier dysfunction and mitigated premature inflammaging and senescence, ultimately enhancing healthspan in this mouse model. Thus, a competent CD4 T cell compartment is critical to ensure healthier aging by promoting host–microbiota mutualism and gut barrier integrity.
Project description:Hematopoietic stem cell (HSC) aging is accompanied by hematopoietic reconstitution dysfunction, including loss of regenerative and engraftment ability, myeloid differentiation bias and elevated risks of hematopoietic malignancies. Gut microbiota, a key regulator of host health and immunity, has been recently reported to impact hematopoiesis. However, there is currently no empirical evidence elucidating the direct impact of gut microbiome on aging hematopoiesis. To assess these potential effects, we performed fecal microbiota transplantation (FMT) from young mice to aged mice and observed an increment in both the absolute number and the engraftment ability of HSCs. Single cell RNA sequencing depicted overall transcriptional changes of HSCs as well as the bone marrow microenvironment and indicated that gut microbiota from young mice enhanced cell cycle activity of HSCs, attenuated canonical inflammatory signals and mitigated inflammation-associated phenotypes in aging hematopoiesis. Integrated microbiome-metabolome analysis uncovered that FMT reshaped gut microbiota construction and metabolite landscape, while the administration of Lachnospiraceae and tryptophan-associated metabolites promoted the recovery of hematopoiesis and rejuvenated aged HSCs. Together, our results highlighted the paramount importance of the gut microbiota in HSC aging and provided a strong rationale to limit hematopoietic exhaustion and treat hematologic disorders.
Project description:Given the criticle role of gut bacteria involve in number of diseases, the gut microbiota from young and aged people were estimated using 16s rRNA next-generation sequencing. This study will benefit to identify the role of gut bacteria on the pathegenic mechasim of aging relative diseases.
Project description:This study was performed to investigate the effect of aging and high fat diet on gut microbiota in F344 rats by the pyrosequencing method.