Project description:This study aimed to investigate the physiological and molecular responses of Solanum lycopersicum (tomato) to Phytophthora cinnamomi infection. The initial defense response in tomato seeds included the production of reactive oxygen species (ROS) and callose deposition. Screening of commercial tomato varieties revealed varying levels of susceptibility, with the variety Marmande exhibiting heightened vulnerability. Three days post-inoculation, Marmande showed increased expression of genes associated with ROS generation, and biosynthesis pathways for phenylpropanoids and flavonoids. Additionally, 850 genes related to cell wall remodeling, including those involved in lignin biosynthesis and pectin methyl esterase inhibitors (PMEIs), were significantly upregulated. Seven days post-inoculation, a stronger transcriptional response was observed, with activation of ethylene (ET) and jasmonic acid (JA) signaling pathways, while salicylic acid (SA) showed minimal activity. Metabolomic analysis of infected roots revealed elevated levels of metabolites linked to lycopene, flavonoids, and phenylpropanoids. Furthermore, infected roots exhibited a significant reduction in pectin levels, which was corroborated by in vitro assays showing zoospore-mediated pectin degradation. These results suggest that degradation of root pectin is a key mechanism facilitating zoospore invasion in susceptible tomato hosts. This study provides new insights into the molecular mechanisms underlying host-pathogen interactions and identifies potential targets for managing Phytophthora cinnamomi-induced diseases in crops.
Project description:To characterize the PTI response of tomato and the effect of the delivery of a subset of effectors, we performed an RNA-seq analysis of tomato Rio Grande prf3 leaves challenged with either the flgII-28 peptide or the following bacterial strains: Agrobacterium tumefaciens GV2260, Pseudomonas fluorescens 55, Pseudomonas putida KT2440, Pseudomonas syringae pv. tomato (Pst) DC3000, Pst DC3000 deltahrcQ-U deltafliC and Pst DC3000 deltaavrPto deltaavrPtoB. NOTE: Samples in SRA were assigned the same sample accession. This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.
Project description:To compare the genome-wide transcriptional effect of ABA and iSB09 in tomato plants, we performed RNA-seq analysis of mock-, 10 uM ABA- or 20 uM iSB09-treated plants. Differential gene expression analysis between mock- and ABA-treated or iSB09-treated seedlings was done with DESeq2 and genes with an absolute value of log2 fold change (log2FC) > 1 or (log2FC) < -1 and p-adjusted value (padj) < 0.05 were selected. iSB09 upregulated and downregulated genes represent a subset of the ABA-responsive genes, which reflects the activation of PYL1-like and PYL4-like ABA receptors in tomato seedlings. Additionally, to compare the genome-wide transcriptional effect of ABA and iCB in tomato plants, we performed RNA-seq analysis of mock-, 10 uM ABA- or 10 uM iCB-treated plants. Differential gene expression analysis between mock- and ABA-treated or iCB-treated seedlings was done with DESeq2 and genes with an absolute value of log2 fold change (log2FC) > 1 or (log2FC) < -1 and p-adjusted value (padj) < 0.05 were selected. iCB mimics ABA transcriptional response through activation of the three subfamilies of ABA receptors.
Project description:Plants represent the nutritional basis of virtually all life on earth and protein-rich foods from crop plants are a global megatrend essential for sustaining an increasing human population and counteracting climate change. While the genomes of crops are increasingly elucidated, little is known about crop proteomes – the entirety of proteins that execute and control nearly every aspect of life. To address this shortcoming we optimized a protocol for mapping the proteome of different crops such as Solanum lycopersicum (tomato) fruit and included four technical replicates and three biological replicates from different tomato plants to demonstrate the robustness of the workflow.
Project description:Post-translational modification of proteins through methylation plays important regulatory role in biological processes. Lysine methylation on histone proteins is known to play important role in chromatin structure and function. However, non-histone protein substrates of this modification remain largely unknown. Herein, we use high resolution mass spectrometry to global screening methylated substrates and lysine- methylation sites in tomato (Solanum Lycopersicum). A total of 241 sites of lysine methylation (mono-, di-, tri-methylation) in 176 proteins with diverse biological functions and subcellular localized were identified in mix tomato with different maturity. Two putative methylation motifs were detected. KEGG pathway category enrichment analysis indicated that methylated proteins are implicated in the regulation of diverse metabolic processes, including arbon fixation in photosynthetic organisms, pentose phosphate pathway, fructose and mannose metabolism, and cysteine and methionine metabolism. Three representative proteins were selected to analyze the effect of methylated modification on protein function. In addition, quantitative RT-PCR further validated the gene expression level of some key methylated proteins during fruit ripening, which are involved in oxidation reduction process, stimulus and stress, energy metabolism, signaling transduction, fruit ripening and senescence. These data represent the first report of methylation proteomic and supply abundant resources for exploring the functions of lysine methylation in tomato and other plants.