Project description:ϕXacN1 is a novel jumbo myovirus infecting the causative agent of Asian citrus canker, Xanthomonas citri. Its linear 384,670 bp double-stranded DNA genome encodes 592 predicted protein coding genes and shows 65,875 bp direct terminal repeats (DTRs), so far the longest DTRs among sequence phage genomes. The DTRs harbor 56 tRNA genes, corresponding to all 20 amino acids. This is the highest number of tRNA genes reported in a phage genome. Codon usage analyses revealed a propensity that the phage encoded tRNAs target codons that are highly used by the phage but less frequently by its host. The existence of these tRNA genes, additional seven translation-related genes as well as a chaperonin gene found in the ϕXacN1 genome suggests an increased level of independence of phage replication on host molecular machinery and a wide host range. Consistently, ϕXacN1 showed a wider host range than other X. citri phages in an infection test against a panel of X. citri strains. Phylogenetic analyses revealed a clade of phages composed of ϕXacN1 and ten other jumbo phages showing an evolutionary stability in their large genome sizes.
Project description:References:
1. Xiaomei Zhu, Lan Yin, Leroy Hood, David Galas and Ping Ao, Efficiency, Robustness and Stochasticity of Gene Regulatory networks in Systems biology: Lambda switch as a working example, 2006.
2. Adam Arkin, John Ross and Harley H. McAdams, Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells, 1998, Genetics, 149: 1633-1648.
3. GenBank sequence: NC_001416 is the whole genome sequence of phage lambda.
Project description:Sequence overlap between two genes is common across all genomes, with viruses having particularly high proportions of these gene overlaps. The natural biological function and effects on fitness of gene overlaps are not fully understood and their effects on gene cluster and genome-level refactoring are unknown.The model bacteriophage φX174 genome displays complex sequence architecture in which ~26% of nucleotides are involved in encoding more than one gene. In this study we use an engineered φX174 phage containing a genome with all gene overlaps removed.
Here we have temporally measured the proteome of a synthetically engineered and wild-type φX174 during infection. We find that almost half of all phage proteins (5/11) have abnormal expression profiles after genome modularisation.
Project description:YerA41 is a myoviridae bacteriophage that was originally isolated due its ability to infect Yersinia ruckeri bacteria, the causative agent of enteric redmouth disease of salmonid fish. Several attempts to determine its genomic DNA sequence using traditional and next generation sequencing technologies failed, indicating that the phage genome is modified such way that it is an unsuitable template for PCR amplification and sequencing. To determine the YerA41 genome sequence we isolated RNA from phage-infected Y. ruckeri cells at different time points post-infection, and sequenced it. The host-genome specific reads were substracted and de novo assembly was performed on the unaligned reads.
Project description:Whole-genome sequencing is an important way to understand the genetic information, gene function, biological characteristics, and living mechanisms of organisms. There is no difficulty to have mega-level genomes sequenced at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. The shotgun sequencing method failed to dissect this genome. After insisting for 10 years and going over 3 generations of sequencing techniques, we successfully dissected the PaP1 genome with 91,715 bp in length. Single-molecule sequencing revealed that this genome contains lots of modified bases, including 51 N6-methyladenines (m6A) and 152 N4-methylcytosines (m4C). At the same time, further investigations revealed a novel immune mechanism of bacteria, by which the host bacteria can recognize and repel the modified bases containing inserts in large scale, and this led to the failure of the shotgun method in PaP1 genome sequencing. Strategy of resolving this problem is use of non-library dependent sequencing techniques or use of the nfi- mutant of E. coli DH5M-NM-1 as the host bacteria to construct the shotgun library. In conclusion, we unlock the mystery of phage PaP1 genome hard to be sequenced, and discover a new mechanism of bacterial immunity in present study. Methylation profiling of Pseudomonas aeruginosa phage PaP1 using kinetic data generated by single-molecule, real-time (SMRT) sequencing on the PacBio RS.
Project description:Viral genomes are most vulnerable to cellular defenses at the start of the infection. A family of jumbo phages related to phage ΦKZ, which infects Pseudomonas aeruginosa, assembles a protein-based phage nucleus to protect replicating phage DNA, but how it is protected prior to phage nucleus assembly is unclear. We find that host proteins related to membrane and lipid biology interact with injected phage protein, clustering in an early phage infection (EPI) vesicle. The injected virion RNA polymerase (vRNAP) executes early gene expression until phage genome separation from the vRNAP and the EPI vesicle, moving into the nascent proteinaceous phage nucleus. Enzymes involved in DNA replication and CRISPR/restriction immune nucleases are excluded by the EPI vesicle. We propose that the EPI vesicle is rapidly constructed with injected phage proteins, phage DNA, host lipids, and host membrane proteins to enable genome protection, early transcription, localized translation, and to ensure faithful genome transfer to the proteinaceous nucleus.
Project description:Viral genomes are most vulnerable to cellular defenses at the start of the infection. A family of jumbo phages related to phage ΦKZ, which infects Pseudomonas aeruginosa, assembles a protein-based phage nucleus to protect replicating phage DNA, but how it is protected prior to phage nucleus assembly is unclear. We find that host proteins related to membrane and lipid biology interact with injected phage protein, clustering in an early phage infection (EPI) vesicle. The injected virion RNA polymerase (vRNAP) executes early gene expression until phage genome separation from the vRNAP and the EPI vesicle, moving into the nascent proteinaceous phage nucleus. Enzymes involved in DNA replication and CRISPR/restriction immune nucleases are excluded by the EPI vesicle. We propose that the EPI vesicle is rapidly constructed with injected phage proteins, phage DNA, host lipids, and host membrane proteins to enable genome protection, early transcription, localized translation, and to ensure faithful genome transfer to the proteinaceous nucleus.
Project description:We used microarray analysis to investigate whole genome transcriptome dynamics of the marine cyanobacterium Prochlorococcus sp. strain MED4 and the T7-like podovirus P-SSP7 over a time course during the 8 hour latent period of lytic infection prior to cell lysis. Manuscript Summary: Interactions between bacterial hosts and their viruses (phages) lead to reciprocal genome evolution through a dynamic co-evolutionary process1-5. Phage-mediated transfer of host genes – often located in genome islands – has had a major impact on microbial evolution1, 4, 6. Furthermore, phage genomes have clearly been shaped by the acquisition of genes from their hosts2, 3, 5. Here we investigate whole-genome expression of a host and phage, the marine cyanobacterium Prochlorococcus and a T7-like cyanophage during lytic infection, to gain insight into these co-evolutionary processes. While most of the phage genome was linearly transcribed over the course of infection, 4 phage-encoded bacterial metabolism genes were part of the same expression cluster, even though they are physically separated on the genome. These genes — encoding photosystem II D1 (psbA), high-light inducible protein (hli), transaldolase (talC) and ribonucleotide reductase (nrd) — are transcribed together with phage DNA replication genes and appear to make up a functional unit involved in energy and deoxynucleotide production needed for phage replication in resource-poor oceans. Also unique to this system was the upregulation of numerous genes in the host during infection. These may be host stress response genes, and/or genes induced by the phage. Many of these host genes are located in genome islands and have homologues in cyanophage genomes. We hypothesize that phage have evolved to utilize upregulated host genes, leading to their stable incorporation into phage genomes and their subsequent transfer back to hosts in genome islands. Thus activation of host genes during infection may be directing the co-evolution of gene content in both host and phage genomes. Keywords: time course, viral infection, marine cyanobacteria, podovirus, bacteriophage, stress response
Project description:Salmonella enterica serovar Typhimurium (S. Typhimurium) definitive phage type 104 (DT104) has caused significant morbidity and mortality in humans and animals for almost three decades. We have completed the full DNA sequence of one DT104 strain, NCTC13348 and show that the main differences between the genome of this isolate and the previously sequenced S. Typhimurium LT2 lie in integrated prophage elements and the Salmonella Genomic Island 1 encoding antibiotic resistance genes. Thirteen isolates of S. Typhimurium DT104 with different pulsed field gel electrophoresis (PFGE) profiles were analyzed by multi locus sequence typing (MLST), plasmid profiling, hybridization to a Pan-Salmonella DNA microarray and prophage-based multiplex PCR. All the isolates belonged to a single MLST type ST19. Microarray data demonstrated that the 13 DT104 isolates were remarkably conserved in gene content. The PFGE band-size differences in these isolates could be explained to a great extent by changes in prophage and plasmid content. Thus, here the nature of variation in different S. Typhimurium DT104 isolates is further defined at the genome level illustrating how this phage type is evolving over time.