ABSTRACT: Genotyping and Molecular characterization of ESBL-producing and Carbapenem-resistant Escherichia coli and Enterobacter hormaechei isolated from sick cats in Lebanon
Project description:Background: It remains unclear how high-risk Escherichia coli lineages, like sequence type (ST) 131, initially adapt to carbapenem exposure in its progression to becoming carbapenem resistant. Methods: Carbapenem mutation frequency was measured in multiple subclades of extended-spectrum β-lactamase (ESBL) positive ST131 clinical isolates using a fluctuation assay followed by whole genome sequencing (WGS) characterization. Genomic, transcriptomic, and porin analyses of ST131 C2/H30Rx isolate, MB1860, under prolonged, increasing carbapenem exposure was performed using two distinct experimental evolutionary platforms to measure fast vs. slow adaptation. Results: All thirteen ESBL positive ST131 strains selected from a diverse (n=184) ST131 bacteremia cohort had detectable ertapenem (ETP) mutational frequencies with a statistically positive correlation between initial ESBL gene copy number and mutation frequency (r = 0.87, P<1e-5). WGS analysis of mutants showed initial response to ETP exposure resulted in significant increases in ESBL gene copy numbers or mutations in outer membrane porin (Omp) encoding genes in the absence of ESBL gene amplification with subclade specific adaptations. In both experimental evolutionary platforms, MB1860 responded to initial ETP exposure by increasing blaCTX-M-15 copy numbers via modular, insertion sequence 26 (IS26) mediated pseudocompound transposons (PCTns). Transposase activity driven by PCTn upregulation was a conserved expression signal in both experimental evolutionary platforms. Stable mutations in Omp encoding genes were detected only after prolonged increasing carbapenem exposure consistent with clinical observations. Conclusions: ESBL gene amplification is a conserved response to initial carbapenem exposure, especially within the high-risk ST131 C2 subclade. Targeting such amplification could assist with mitigating carbapenem resistance development.
Project description:The emergence of colistin resistance in carbapenem-resistant and extended-spectrum ß-lactamase (ESBL)-producing bacteria is a significant threat to human health, and new treatment strategies are urgently required. Here we investigated the ability of the safe-for-human use ionophore PBT2 to restore antibiotic sensitivity in several polymyxin-resistant, ESBL-producing, carbapenem resistant Gram-negative human pathogens. PBT2 was observed to resensitize Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including a ‘next generation’ polymyxin derivative, FADDI-287. To gain additional insight into the potential mechanism of action of PBT2, we analyzed the transcriptome of K. pneumoniae and E. coli in the presence of sub-inhibitory concentrations of PBT2. Treatment with PBT2 was associated with multiple stress responses in both K. pneumoniae and E. coli. Significant changes in the transcription of transition metal ion homeostasis genes were observed in both strains.
Project description:The emergence of polymyxin resistance in carbapenem-resistant and extended-spectrum -lactamase (ESBL)-producing bacteria is a critical threat to human health, and new treatment strategies are urgently required. Here, we investigated the ability of the safe-for-human use ionophore PBT2 to restore antibiotic sensitivity in polymyxin-resistant, ESBL-producing, carbapenem-resistant Gram-negative human pathogens. PBT2 was observed to resensitize Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii and Pseudomonas aeruginosa to last-resort polymyxin class antibiotics, including the less-toxic next-generation polymyxin derivative, FADDI-287. We were unable to select for mutants resistant to PBT2 + FADDI-287 in polymyxin resistant E. coli containing a plasmid-borne mcr-1 gene or K. pneumoniae carrying a chromosomal mgrB mutation. Using a highly invasive K. pneumoniae strain engineered for polymyxin resistance through mgrB mutation, we successfully demonstrated the efficacy of PBT2 + FADDI-287 in vivo for the treatment of Gram-negative sepsis. These data present a new treatment modality to break antibiotic resistance in high priority polymyxin-resistant Gram-negative pathogens.
Project description:Background: Efflux pumps are important cofactors for carbapenem resistance in Enterobacter cloacae. The regulatory mechanism by which asmA influences efflux pump function in this species remains unclear. This study explored the regulatory role of asmA on efflux pumps in carbapenem-resistant Enterobacter cloacae. Results: Sixteen carbapenem-resistant Enterobacter cloacae were collected. All strains carried blaNDM, 87.5% of which were blaNDM-1 and 12.5% were blaNDM-5. PAβN had weak inhibition on carbapenem resistance in ST78 and strong inhibition in ST2260. ST2260(CY-8) was still resistant to carbapenems after elimination of blaNDM and could be inhibited by PAβN. However, ST78(CY-9) lost its resistance to carbapenems. Knockout of asmA reduced the MIC of ST2260 by 16-fold. ST78 showed no such changes. Growth curves revealed impaired growth only in ST2260ΔasmA. Transcriptomics/qRT-PCR revealed no significantly altered acrAB-tolC or marA expression in either strain. Membrane proteomics detected AcrB loss specifically in ST2260ΔasmA. The loss of asmA affected a wide range of membrane proteins, especially OmpW. Molecular docking predicted that AsmA could bind to AcrB, with stronger binding energy in ST78. The buried area of the CY-8 model involved 110 contact residues, while the number of contacts of the CY-9 model increased to 144. The AsmA chain of the two models had 46 common contact residues, and the AcrB chain had 60 common contact residues. AcrB of ST78 generally carries the I277V mutation. Conclusion: asmA is highly conserved in Enterobacter cloacae. It has functional heterogeneity in different ST types. In ST2260, asmA can affect efflux pump-mediated carbapenem resistance. AsmA can regulate AcrAB-TolC not by affecting marA. It is predicted that AsmA can maintain the carbapenem resistance of Enterobacter cloacae ST2260 by helping AcrB anchor to the inner membrane. The difference in carbapenem resistance mediated by efflux pumps between ST78 and ST2260 suggests that ST78 commonly carries the AcrB I277V mutation, which is a key site for efflux of β-lactams.
Project description:Draft genome sequence of a high virulent multidrug resistent ESBL-producing Enterobacter hormaechei isolated from a canine urine sample
Project description:The present study examines changes in global gene expression patterns and in virulence factor-associated genes in an extended spectrum beta-lactamase (ESBL)-producing UPEC (ESBL019) during the morphologic transitions induced by an ineffective antibiotic and in the presence of human primary bladder epithelial cells. The morphological shifts induced by ineffective antibiotics are associated with significant transcriptional virulence alterations in ESBL-producing UPEC, which may affect survival and persistence in the urinary tract.