Project description:Human renal cell carcinomas (RCC) have differential expression of HIF-1alpha and HIF-2alpha, depending on VHL genotype and other events. Here, we have divided a series of RCC samples for HIF-alpha expression and VHL genotype, in order to define differentially expressed genes Keywords: Patient Sample Study A total of 57 frozen RCC samples were stained for HIF-1alpha and HIF-2alpha, and genotyped for VHL. 5 VHL WT/HIF-negative, 8 VHL-deficient/HIF-1alpha+/HIF-2alpha+ and 8 VHL-deficient/HIF-2alpha+ tumors were selected for microarray
Project description:Human renal cell carcinomas (RCC) have differential expression of HIF-1alpha and HIF-2alpha, depending on VHL genotype and other events. Here, we have divided a series of RCC samples based on HIF-alpha expression, in order to examine levels of genomic DNA aberration. Keywords: Patient Sample Study A total of 57 frozen RCC samples were stained for HIF-1alpha and HIF-2alpha, and genotyped for VHL. 10 VHL-deficient/HIF-1alpha+/HIF-2alpha+ and 11 VHL-deficient/HIF-2alpha+ tumors were selected for array CGH.
Project description:Renal cell carcinoma (RCC) tumors express varying gene profiles, dependent on VHL and HIF status, as well as other events. Here we analyzed a series of RCC tumors for HIF-alpha expression and VHL genotype, in relation to overal gene expression profiles. Keywords: Patient sample study
Project description:Human renal cell carcinomas (RCC) have differential expression of HIF-1alpha and HIF-2alpha, depending on VHL genotype and other events. Here, we have divided a series of RCC samples for HIF-alpha expression and VHL genotype, in order to define differentially expressed genes Keywords: Patient Sample Study
Project description:Human renal cell carcinomas (RCC) have differential expression of HIF-1alpha and HIF-2alpha, depending on VHL genotype and other events. Here, we have divided a series of RCC samples based on HIF-alpha expression, in order to examine levels of genomic DNA aberration. Keywords: Patient Sample Study
Project description:The von Hippel-Lindau (VHL) tumor suppressor functions as a ubiquitin ligase that mediates proteolytic inactivation of hydroxylated a subunits of hypoxia-inducible factor (HIF). Although studies of VHL defective renal carcinoma cells suggest the existence of other VHL tumor suppressor pathways, dysregulation of the HIF transcriptional cascade has extensive effects that make it difficult to distinguish whether, and to what extent, observed abnormalities in these cells represent effects on pathways that are distinct from HIF. Here, we report on a genetic analysis of HIF dependent and independent effects of VHL inactivation by studying gene expression patterns in C. elegans. We show tight conservation of the HIF-1/VHL-1/EGL-9 hydroxylase pathway. However, persisting differential gene expression in hif-1 versus hif-1; vhl-1 double mutant worms clearly distinguished HIF-1 independent effects of VHL-1 inactivation. Genomic clustering, predicted functional similarities, and a common pattern of dysregulation in both vhl-1 worms and a set of mutants (dpy-18, let-268, gon-1, mig-17 and unc-6), with different defects in extracellular matrix formation, suggest that dysregulation of these genes reflects a discrete HIF-1 independent function of VHL-1 that is connected with extracellular matrix function. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc. Bishop T, Lau KW, Epstein AC, Kim SK, Jiang M, O'rourke D, Pugh CW, Gleadle JM, Taylor MS, Hodgkin J, Ratcliffe PJ, Genetic Analysis of Pathways Regulated by the von Hippel-Lindau Tumor Suppressor in Caenorhabditis elegans., Bishop T, et al. (2004) PLoS Biol 2(10):e289, 2004-10-01, http://biology.plosjournals.org/plosonline/?request=get-document&doi=10.1371/journal.pbio.0020289 Computed
Project description:The von Hippel-Lindau (VHL) tumor suppressor functions as a ubiquitin ligase that mediates proteolytic inactivation of hydroxylated a subunits of hypoxia-inducible factor (HIF). Although studies of VHL defective renal carcinoma cells suggest the existence of other VHL tumor suppressor pathways, dysregulation of the HIF transcriptional cascade has extensive effects that make it difficult to distinguish whether, and to what extent, observed abnormalities in these cells represent effects on pathways distinct from HIF. Here, we report on a genetic analysis of HIF dependent and independent effects of VHL inactivation by studying gene expression patterns in C. elegans. We show tight conservation of the HIF-1/VHL-1/EGL-9 hydroxylase pathway. However, persisting differential gene expression in hif-1 versus hif-1; vhl-1 double mutant worms clearly distinguished HIF-1 independent effects of VHL-1 inactivation. Genomic clustering, predicted functional similarities, and a common pattern of dysregulation in both vhl-1 worms and a set of mutants (dpy-18, let-268, gon-1, mig-17 and unc-6), with different defects in extracellular matrix formation, suggest that dysregulation of these genes reflects a discrete HIF-1 independent function of VHL-1 that is connected with extracellular matrix function.
Project description:VHL is a tumor suppressor gene involved in the oxygen-sensing pathway whose germline mutations predispose to distinct phenotypes. Heterozygous mutations predispose to von Hippel-Lindau disease characterized by the development of multiple tumors (including hemangioblastomas, renal cell carcinomas and pheochromocytomas)1-3. More recently, a specific VHL-R200W mutation was shown to be responsible for Chuvash Polycythemia in homozygous carriers whereas heterozygous individuals have no clinical manifestation4. We report here a family carrying, on the same allele, VHL mutations characteristics of the two types of disease (a Chuvash polycythemia-R200W mutation and a von Hippel-Lindau disease-R161Q mutation). Genotyping, modeling analysis and functional studies, including transcriptomic profile of the distinct mutants validated for the first time on direct HIF target genes, show a gradual capacity of the VHL mutants to regulate the hypoxia responsive pathway that correlate with the severity of the developed phenotype. Our study provide original results that illuminate genotype/phenotype correlations in von Hippel-Lindau disease.
Project description:Renal hypoxia is widespread in acute kidney injury (AKI) of various aetiologies. Hypoxia adaptation, conferred through the hypoxia-inducible factor (HIF), appears to be insufficient. Here we show that HIF activation in renal tubules through Pax8-rtTA-based inducible knockout of von Hippel-Lindau protein (VHL-KO) protects from rhabdomyolysis-induced AKI. In this model, histological observations indicate that injury mainly affects proximal convoluted tubules, with 5% necrosis at d1 and 40% necrosis at d2. HIF-1alpha up-regulation in distal tubules reflects renal hypoxia. However, lack of HIF in proximal tubules suggests insufficient adaptation by HIF. AKI in VHL-KO mice leads to prominent HIF activation in all nephron segments, as well as to reduced serum creatinine, serum urea, tubular necrosis, and apoptosis marker caspase-3 protein. At d1 after rhabdomyolysis, when tubular injury is potentially reversible, HIF mediated protection in AKI is associated with activated glycolysis, cellular glucose uptake and utilization, autophagy, vasodilation, and proton removal as demonstrated by qPCR, pathway enrichment analysis and immunohistochemistry. Together, our data provide evidence for a HIF-orchestrated multi-level shift towards glycolysis as a major mechanism for protection against acute tubular injury. All experiments were carried out in transgenic mice in which selective renal tubular VHL knockout (VHL-KO) was inducible by doxycycline (Reference: Mathia S, Paliege A, Koesters R, Peters H, Neumayer HH, Bachmann S, Rosenberger C. Action of hypoxia-inducible factor in liver and kidney from mice with Pax8-rtTA-based deletion of von Hippel-Lindau protein. Acta Physiol (Oxf). 2013; 207(3):565-76.). Four groups of animals were used: 1) controls: untreated mice; 2) VHL-KO: injected with doxycycline (0.1 mg per 10 g body weight SC), 4 days prior to sacrifice; 3) AKI: rhabdomyolysis; 4) VHL-KO/AKI: doxycycline plus rhabdomyolysis. To induce AKI, 50% glycerol (0.05 ml per 10 g body weight) was injected IM into the left hind limb under isoflurane narcosis. Drinking water was withdrawn between 20 h prior and 24 h after glycerol injection.