Project description:Cell clones that lack P53 signaling occur frequently in ulcerative colitis (UC) and are considered drivers in UC-associated colorectal cancer. Trp53 mutant cells often display decreased P53 signaling and have previously been shown to outcompete wild type (WT) cells in a mouse model of colitis (DSS colitis), but not in healthy mice. However, the mechanism responsible for the observed context-dependent effects of P53 are not understood. Therefore, we aimed to explore this by studying the behavior of Trp53-deficient cells specifically in injured mucosa. We have developed murine and organoid-based models to study the context dependent role of Trp53 knock-out (KO). We use inducible KO systems in mouse models of DSS colitis to study the loss of Trp53 in the injury and regenerative state. Colon organoids are employed to recapitulate the in vivo findings in order to elucidate the pathways involved.
2024-10-30 | GSE254312 | GEO
Project description:p53 terminates the regenerative fetal-like state after colitis-associated injury
Project description:Cells that lack p53 signaling frequently occur in ulcerative colitis (UC) and are considered early drivers in UC-associated colorectal cancer (CRC). Epithelial injury during colitis is associated with transient stem cell reprogramming from the adult, homeostatic to a "fetal-like" regenerative state. Here, we use murine and organoid-based models to study the role of Trp53 during epithelial reprogramming. We find that p53 signaling is silent and dispensable during homeostasis but strongly up-regulated in the epithelium upon DSS-induced colitis. While in WT cells this causes termination of the regenerative state, crypts that lack Trp53 remain locked in the highly proliferative, regenerative state long-term. The regenerative state in WT cells requires high Wnt signaling to maintain elevated levels of glycolysis. Instead, Trp53 deficiency enables Wnt-independent glycolysis due to overexpression of rate-limiting enzyme PKM2. Our study reveals the context-dependent relevance of p53 signaling specifically in the injury-induced regenerative state, explaining the high abundance of clones lacking p53 signaling in UC and UC-associated CRC.
Project description:The samples are a part of a study aiming at diagnosing ulcerative colitis from genome-wide gene expression analysis of the colonic mucosa. Colonic mucosal samples were collected as endoscopic pinch biopsies from ulcerative colitis patients and from control subjects. Samples with and without macroscopic signs of inflammation were collected from the patients. Keywords: Disease state analysis
Project description:The capacity to regenerate the spinal cord after an injury is a coveted trait that only a limited group of non-mammalian organisms can achieve. In Xenopus laevis, this capacity is only present during larval or tadpole stages, but is absent during postmetamorphic frog stages. This provides an excellent model for comparative studies between a regenerative and a non-regenerative stage to identify the cellular and molecular mechanisms that explain the difference in regenerative potential. Here, we used iTRAQ chemistry to obtain a quantitative proteome of the spinal cord 1 day after a transection injury, and used sham operated animals as controls. We quantified a total of 6,384 proteins, with 172 showing significant differential expression in the regenerative stage and 240 in the non-regenerative stage, with an overlap of only 14 proteins. Functional enrichment analysis revealed that while the regenerative stage downregulated synapse/vesicle and mitochondrial proteins, the non-regenerative stage upregulated lipid metabolism proteins, and downregulated ribosomal and translation control proteins. Furthermore, STRING network analysis showed that proteins belonging to these groups are highly interconnected, providing interesting candidates for future functional studies.
Project description:The samples are a part of a study aiming at diagnosing ulcerative colitis from genome-wide gene expression analysis of the colonic mucosa. Colonic mucosal samples were collected as endoscopic pinch biopsies from ulcerative colitis patients and from control subjects. Samples with and without macroscopic signs of inflammation were collected from the patients. Experiment Overall Design: The series contain eight UC samples with macroscopic signs of inflammation, 13 UC smaples without macroscopic signs of inflammation, five control subjects.