Project description:This study examines the proteolytic activity of the kefir grains (a combination of bacteria and yeast) on bovine milk proteins. SDS-PAGE analysis reveals substantial digestion of milk proteins by the kefir grains in comparison with control samples. Mass spectrometric analysis reveals that the kefir microorganisms released 609 new peptide fragments and significantly altered the abundance of around 1,500 peptides compared to the controls. These kefir-digested peptides derived from 55 milk proteins. We show that kefir contains 25 previously identified functional peptides with actions including antihypertensive, antimicrobial, opioid and anti-oxidative .
Project description:In this study, we applied a proteomics strategy to identify peptides present in sheep milk kefir fermented at different times. We aimed to understand changes in the digestion pattern of milk proteins as well as to identify potential bioactive peptides.
Project description:Kefir is a milk fermented by microorganisms with probiotic potential. Its consumption is associated with several beneficial effects, from antibacterial, healing, antioxidant, anti-inflammatory, anti-allergic, plasma glucose and cholesterol control to antitumor and antihypertensive activities. Despite its great potential, little is known about the bioactive molecules responsible for these actions. Therefore, the present project aims to perform the proteomic study of Kefir and its grain used for the milk fermentation aiming to identify the bioactive peptides, in particular those peptides with action in the cardiovascular system.
2019-12-16 | PXD012074 | JPOST Repository
Project description:fortified-milk kefir with microalgae
Project description:High throughput sequencing of miRNAs collected from tammar milk at different time points of lactation showed high levels of miRNA secreted in milk and allowed the identification of differentially expressed milk miRNAs during the lactation cycle as putative markers of mammary gland activity and functional candidate signals to assist growth and timed development of the young. Comparative analysis of miRNA distribution in milk and blood serum suggests that milk miRNAs are primarily expressed from mammary gland rather than transferred from maternal circulating blood, likely through a new putative exosomal secretory pathway.