Project description:tri38-lar - lar - Analyse the transcriptome of Arabidopsis thaliana plants developing localized acquired resistance (LAR) and a hypersensitive response (HR). The goal is to identify genes inducing LAR and/or HR. Plants were treated either with PstDC3000 (avrRpm1)or MgCl2 (control plants). The samples were studied at 3 points of the infection kinetics of the LAR phenomenon: 6h, 24h and 48h. Keywords: normal vs disease comparison
Project description:tri38-lar - lar - Analyse the transcriptome of Arabidopsis thaliana plants developing localized acquired resistance (LAR) and a hypersensitive response (HR). The goal is to identify genes inducing LAR and/or HR. Plants were treated either with PstDC3000 (avrRpm1)or MgCl2 (control plants). The samples were studied at 3 points of the infection kinetics of the LAR phenomenon: 6h, 24h and 48h. Keywords: normal vs disease comparison 3 dye-swaps - CATMA arrays 12 biological repetitions were pooled for this experiment.
Project description:tri38-lar - hr - Analyse the transcriptome of Arabidopsis thaliana plants developing localized acquired resistance (LAR) and a hypersensitive response (HR). The goal is to identify genes inducing LAR and/or HR. Here, we want to analyse the transcriptome of Arabidopsis thaliana developing HR. To achieve this, we used Col0 leaf tissues developing an HR reaction after inoculation of the avirulent strain of PstDC3000 carrying the gene avrRpm1. Keywords: normal vs disease comparison
Project description:tri38-lar - hr - Analyse the transcriptome of Arabidopsis thaliana plants developing localized acquired resistance (LAR) and a hypersensitive response (HR). The goal is to identify genes inducing LAR and/or HR. Here, we want to analyse the transcriptome of Arabidopsis thaliana developing HR. To achieve this, we used Col0 leaf tissues developing an HR reaction after inoculation of the avirulent strain of PstDC3000 carrying the gene avrRpm1. Keywords: normal vs disease comparison 1 dye-swap - CATMA arrays
Project description:We show that the catalytic a subunits KIN10 and KIN11 of the Arabidopsis thaliana SnRK1 complex interact with the STOREKEEPER RELATED 1/G-element Binding Protein (STKR1) inside the plant cell nucleus. Overexpression of STKR1 in transgenic Arabidopsis plants led to reduced growth, a delay in flowering and strongly attenuated senescence. At the global transcriptome level, genes affected by STKR1 overexpression were broadly associated with systemic acquired resistance and transgenic plants showed enhanced resistance towards a virulent strain of the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2.
Project description:The goal of this project is to compare the primary metabolite profile in different tissue types of the model plant Arabidopsis thaliana. Specifically, plants were grown hydroponically under the long-day (16hr light/day) condition at 21C. Tissue samples, including leaves, inflorescences, and roots were harvest 4 1/2 weeks post sowing. Untargeted primary metabolites profiling was carried out using GCTOF.
Project description:Plants have developed a complicated resistance system, and they exhibit various defense patterns in response to different attackers. However, the determine factors of plant defense patterns are still not clear. Here, we hypothesized that damage patterns of plant attackers play an important role in determining the plant defense patterns. To test this hypothesis, we selected leafminer, which has a special feeding pattern more similar to pathogen damage than chewing insects, as our model insect, and Arabidopsis thaliana as the response plants. The local and systemic responses of Arabidopsis thaliana to leafminer feeding were investigated using the Affymetrix ATH1 genome array.