Project description:The shrimp aquaculture industry is vulnerable to large losses due to acute hepatopancreatic necrosis disease (AHPND), caused by the bacterium Vibrio parahaemolyticus. The mechanism by which the pathogen causes disease, and the host immune response, is not completely understood. The shrimp hepatopancreas is a multi-functional organ with roles in digestion, immunity, molting and reproduction. Therefore, we set out to characterize the cells of the hepatopancreas and the host response to Vibrio parahaemolyticus infection at single-cell resolution. The hepatopancreas from three individual shrimp were processed to create a single-cell transcriptomic atlas. Then the hepatopancreas from three Vibrio parahaemolyticus infected and two mocked treated shrimp were sampled for infection study. All single-cell libraries were generated using the 10X Genomics platform and sequenced on an Illumina sequencer. Data were aligned to the Litopenaeus vannamei reference genome using Cell Ranger. Seurat and clusterProfiler were used for downstream analyses. Cells of the hepatopancreas were characterized and the transcriptomic response to AHPND-causing V. parahaemolyticus was examined. Data will inform further functional studies and has the potential to aid in the development of novel preventative measures or treatments.
2026-02-18 | GSE306674 | GEO
Project description:Bacterial diversity of rearing water of shrimp larvae at mysis 2 stage
Project description:The phenomenon of trained immunity, which facilitates vaccine development for disease control, has been identified in shrimp; however, the mechanism remains elusive. In the present study, we found that histone H3K27 acetylation (H3K27ac) mediated by the lysine acetyltransferase KAT8 plays an important role in preventing white spot syndrome virus (WSSV) infection in the shrimp Marsupenaeus japonicus. We then successfully established a model of trained immunity via the use of UV-inactivated WSSV to explore the underlying mechanism(s) in shrimp. In UV-WSSV-trained shrimp, the glycolysis and tricarboxylic acid (TCA) cycle metabolic pathways were enhanced and acetyl-CoA concentrations were increased. As the acetyl group donor, acetyl-CoA promotes KAT8 activity to increase H3K27 acetylation. H3K27ac is deposited at the promoter region of the transcription factor Dorsal to facilitate its expression and then Dorsal promotes the expression of an interferon-like cytokine, Vago5, and antimicrobial peptides that act against WSSV infection. H3K27ac is also deposited at the promoter region of hexokinase 2 and isocitrate dehydrogenase, which positively regulates glycolysis and the TCA cycle in a feedforward manner. Our results reveal a novel mechanism of trained immunity induced by UV-WSSV in shrimp and provide a theoretical basis for the development of antiviral vaccines for disease control in shrimp aquaculture.
Project description:To present, the only known inv*olvement of the gills in the immune response of shrimp is solely assisting the hemocytes in filtering out the harmful factors. This global expression of novel genes revealed several immune-related genes specifically expressed in high amounts only in gills. This data provide new insights on the immune defense of shrimp.
Project description:The transcriptomic response of two strains of the Pacific whiteleg shrimp, different in their resistance to Taura Syndrome Virus (TSV), in response to infection with TSV and Yellow Head Virus (YHV). Changes in gene expression in the shrimp’s hepatopancreas were assessed using a cDNA microarray containing 2,469 putative unigenes. The patterns of gene expression between the shrimp strains were considerably similar, except for the more advanced stages of Taura Syndrome. Between the different treatments approximately 250 genes were differently expressed. The most advanced stages of YHV infection showed the highest number of differently expressed genes. During infection there were profound changes in the expression of genes related to lipid and protein metabolism, cellular trafficking, immune defense and stress response. Keywords: Disease state analysis, disease resistance There were 5 biological replicates for each of the groups in this experiment. Also, two strains of Litopenaeus vannamei were used: a strain resistant to TSV and a strain susceptible to TSV (Kona line). The treatments consisted of injecting both strains with 60mL of a shrimp extract made from shrimp previously injected with either a SPF shrimp extract (1x10-4), Taura Syndrome Virus (1x10-5) or Yellow Head Virus (1x10-4). The 2 initial control groups were composed of hepatopancreas samples from both strains prior the injections. Samples were also collected from at days 1 and 2 from both strains from the 3 different treatments (control, TSV and YHV).
Project description:The study aimed to determine effect of polychaetes as a shrimp feed on male reproductive maturation at transcriptional level through a cDNA microarray in the black tiger shrimp (Penaeus monodon). Thus, the experiment was to compare transcriptomic profiles of two different parts of reproductive organs, namely testes (TT) and vas deferens (VD), of domesticated 17-month-old between two different feeds, namely commercial pellet and polychaetes after feeding for one month. Differentially expressed genes were identified through the microarray analysis, and the microarray results were confirmed by real-time PCR. Selected genes were further characterized.