Project description:We used three different strains of Pseudomonas syringae pv tomato DC3000 to investigate systemic responses to infection in Arabidopsis and the development of SAR. Wildtype DC3000, the hrpA mutant and DC3000 carrying the avirulence gene avrRpm1 were syringe infiltrated into 4-week-old plants at a concentration of 10e8 cfu/ml. At least 5 leaves per plant were infiltrated and at least 10 plants were pooled for each sample. Systemic, uninfected tissue was then harvested at 8, 12 and 21h after inoculation. Three independent experiments were carried out to give three biological replicates for each timepoint.
Project description:We implemented transcriptional analysis methods using cDNA and high-throughput sequencing data to identify HrpL-regulated genes for six strains of Pseudomonas syringae
Project description:Pseudomonas syringae, a Gram-negative plant pathogen, infects more than 50 crops with its type III secretion system (T3SS) and causes severe economic losses around the world. Although the mechanisms of virulence-associated regulators of P. syringae T3SS have been studied for decades, the crosstalk and network underlying these regulators are still elusive. Previously, we have individually studied a group of T3SS regulators, including AefR, HrpS, and RhpRS. In the present study, we found 4 new T3SS regulator genes (envZ, ompR, tsiS and phoQ) via transposon-mediated mutagenesis. Two-component systems EnvZ and TsiS natively regulate T3SS. In order to uncover the crosstalk between 16 virulence-associated regulators, (including AefR, AlgU, CvsR, GacA, HrpL, HrpR, HrpS, MgrA, OmpR, PhoP, PilR, PsrA, RhpR, RpoN, TsiR and Vfr) in P. syringae, we mapped an intricate network named PSVnet (Pseudomonas syringae Virulence Regulatory Network) by combining differentially expression genes in RNA-seq and binding loci in ChIP-seq of all regulators.
Project description:Bacteria use a variety of mechanisms, such as two‐component regulatory systems (TCSs), to rapidly sense and respond to distinct conditions and signals in their host organisms. For example, a type III secretion system (T3SS) is the key determinant of the virulence of the model plant pathogen Pseudomonas syringae and contains the TCS RhpRS as a key regulator. However, the signal sensed by RhpRS remains unknown. We found that RhpRS directly senses plant-generated polyphenols and responds by switching off P. syringae T3SS via crosstalk with alternative histidine kinases. Through a chemical screen, we identified three natural polyphenols (tannic acid, 1,2,3,4,6-pentagalloylglucose and epigallocatechin gallate) that induced the expression of the rhpRS operon in a RhpS-dependent manner.
Project description:Many bacteria can transition from a planktonic lifestyle to life attached to a surface. Changes in gene expression have been documented in bacteria in mature biofilms, but few studies have looked at gene expression during the initial stages of surface attachment. To investigate this, we performed RNA-Seq using the model organism Pseudomonas syringae B728a which has been found in rivers and lakes but is known for living on the leaf surface. We compared gene expression of wild-type P. syringae B728a cells attached to a filter for 2 hours to the gene expression of wild-type P. syringae B728a cells in King's medium B broth. We found that certain gene catergories were quickly induced when cells were on a surface such as flagellar synthesis and motility while other gene categories were quickly repressed such as phytotoxin synthesis and transport. These fast changes in gene expression suggest that P. syringae B728a uses surface attachment as a potential cue to better adapt to life on a surface.
Project description:Although the ubiquitous bacterial secondary messenger cyclic diguanylate (c-di-GMP) plays important roles in various cellular functions including the formation of biofilm in a wide range of bacteria, its function in model plant pathogen Pseudomonas syringae is largely elusive. In order to test this in P. syringae, we overexpressed a diguanylate cyclase (YedQ) and a phosphodiesterase (YhjH) that are originally from Escherichia coli, resulting in high and low c-di-GMP levels in P. syringae, respectively. Through performing genome-wide RNA sequencing of these two strains, we found that c-di-GMP regulates (i) fliN, fliE and flhA genes, which are associated with flagellar assembly, (ii) alg8 and alg44, which are related to exopolysaccaride biosynthesis pathway, (iii) pvdE, pvdP and pvsA genes, related to siderophore biosynthesis pathway, and (iv) sodA, which is a superoxide dismutase. In particular, we identified five genes sensitive to elevated c-di-GMP level and constructed five luciferase-based reporters that effectively respond to intracellular level of c-di-GMP in P. syringae, which can be used to measure c-di-GMP levels in vivo in the future. Based on the RNA-seq results, phenotypic assays confirmed that c-di-GMP regulated many important biological pathways in P. syringae, such as negative regulation of type III secretion system (T3SS) and motility as well as positive regulation of EPS production, siderophore production and oxidative stress resistance. Taken together, the present study demonstrated that c-di-GMP is closely related to virulence and stress response in P. syringae, suggesting that tuning its level can be a new strategy to protect plants from the attack of this pathogen in the future.
Project description:We implemented transcriptional analysis methods using cDNA and high-throughput sequencing data to identify HrpL-regulated genes for six strains of Pseudomonas syringae Each Pseudomonas syringae strains was transformed with either pBAD::EV or pBAD containing native hrpL sequence. Strains were grown in MM media supplemented with arabinose and collected 1, 3, and 5 hours post arabinose treatment. RNA was extracted for each time point and mixed at a 1/3 ratio. After removal of rRNA, double stranded cDNA was generated and library prepared accordeing to Illumina protocols.
Project description:We used three different strains of Pseudomonas syringae pv tomato DC3000 to investigate systemic responses to infection in Arabidopsis and the development of SAR. Wildtype DC3000, the hrpA mutant and DC3000 carrying the avirulence gene avrRpm1 were syringe infiltrated into 4-week-old plants at a concentration of 10e8 cfu/ml. At least 5 leaves per plant were infiltrated and at least 10 plants were pooled for each sample. Systemic, uninfected tissue was then harvested at 8, 12 and 21h after inoculation. Three independent experiments were carried out to give three biological replicates for each timepoint. 27 samples were used in this experiment.
Project description:Pseudomonas syringae pv. phaseolicola (Pph) is a significant bacterial pathogen of agricultural crops, and phage Φ6 and other members of the dsRNA virus family Cystoviridae undergo lytic (virulent) infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage Φ6 as a model system in evolutionary biology, Pph resistance to phage Φ6 remains poorly characterized. To investigate differences between phage Φ6 resistant Pseudomonas syringae pathovar phaseolicola strains, we performed expression analysis of super and non piliated strains of Pseudomonas syringae to determine the genetic cause of resistance to viral infection.