Project description:This study is being conducted to learn more about family communication of genetic risk information. Semi-structured interviews lasting up to one hour will be conducted with three populations: parent/child pairs at risk for Huntington’s Disease, parent/child pairs at risk for hereditary cancer, and genetic counselors.
Project description:Mucosal-luminal interface (MLI) samples were collected from a cohort of children with new-onset IBD and microbial cells were harvested and processed for metaproteomic analysis. Deep metaproteomics data analysis was then performed for better understanding the MLI microbiota functions in the development of pediatric IBD.
2018-08-03 | PXD007819 | Pride
Project description:16S rRNA sequences of human fecal microbiota of mother-child pairs from Southern Brazil
Project description:The objective of the present study was to identify the nutrient utilization and the SCFA production potential of gut microbes during the first year of life. The 16S sequencing data represents 100 mother-child pairs, longitudinally for the infants (0, 3mo, 6mo and 12mo) and mothers 18 weeks pregnancy. We wanted to identify the SCFA composition in pregnant woman and their infants through the first year of life, and their correlation to gut bacteria and other influencal factors. Metaproteomics on selected infants were analyzed to look for nutrient sources used by potential SCFA producers.
Project description:This study presents a validated, open-source QIIME2- and R-based pipeline for 16S rRNA gene profiling using multi-amplicon sequencing. It aims to overcome the limitations of commercial, closed-source tools by offering a standardized and reproducible workflow. The pipeline was benchmarked against proprietary software using five mock communities and 12 child–caregiver fecal sample pairs, showing nearly identical microbial profiles, greater sequencing depth, and improved taxonomic resolution. High reproducibility (R = 0.99, p < 0.0001) was achieved across all datasets. Application to pediatric cancer samples revealed distinct Bifidobacterium variants in children whose microbiota closely matched their caregivers’. This highlights the pipeline’s utility in studying microbial relationships. Overall, the pipeline supports transparent, adaptable, and accurate microbiome analysis, advancing research in both clinical and experimental settings while promoting open-source solutions for reproducible science.
Project description:Background & Aims: Most inflammatory bowel diseases (IBDs) are classic polygenic disorders represented by common alleles. However, multiple determinants of very early-onset IBD characterized by a more extensive disease course remain largely unknown. The present study aimed to define the genetic architecture of pediatric and adult-onset IBDs in the Polish population. Results: Of 82 SNPs validated/replicated for association with IBD, a novel BRD2 (rs1049526) association was found in both pediatric (OR= 2.35) and adult (OR= 2.66) patients. Thirty SNPs were shared between pediatric and adult patients; 22 and 30 were unique to adult-onset and pediatric-onset IBD, respectively. WES identified numerous rare/infrequent, potentially deleterious variants in IBD-associated or innate immunity-associated genes. Both groups of variants were over-represented in affected children. Two highly deleterious homozygous variants, HLA-DRB1 c.565_566insC and NCF4 p.Arg8Trp, were found in two affected children, and WAS p.Glu131Lys was found in one child and one adult patient. Conclusions: Our GWAS revealed differences in the polygenic architecture of pediatric- and adult-onset IBD. A significant accumulation of rare/low frequency deleterious variants in affected children suggests a contribution by yet unexplained genetic components.
Project description:Microbial dysbiosis has been identified in adult inflammatory bowel disease (IBD) patients. However, microbial composition and functional interplay between host genetics and microorganisms in early IBD onset remain poorly defined. Here, we identified and demonstrated the causal effect of Atopobium parvulum and the gut microbiota in pediatric IBD. Microbiota and proteomic profiling revealed that the abundance of A. parvulum, a potent H2S producer, was associated with increased disease severity and a concurrent reduction in the expression of the host H2S detoxification pathway. In the Il10-/- mouse model of inflammation, A. parvulum induced severe pancolitis that was dependent on the presence of the gut microbiota. In addition, we demonstrated that administration of bismuth, an H2S scavenger, prevented A. parvulum-induced colitis. Our findings identified Atopobium parvulum as a major mediator of inflammation severity, and revealed an alteration of the balance between the production and detoxification of H2S in the gastrointestinal tract.